scholarly journals EL NINO, LA NINA, DAN PENAWARAN PANGAN DI JAWA, INDONESIA

Author(s):  
Arini Wahyu Utami ◽  
Jamhari Jamhari ◽  
Suhatmini Hardyastuti

Paddy and maize are two important food crops in Indonesia and mainly produced in Java Island. This research aimed to know the impact of El Nino and La Nina on paddy and maize farmer’s supply in Java. Cross sectional data from four provinces in Java was combined with time series data during 1987-2006. Paddy supply was estimated using log model, while maize supply used autoregressive model; each was estimated using two types of regression function. First, it included dummy variable of El Nino and La Nina to know their influence into paddy and maize supply. Second, Southern Oscillation Index was used to analyze the supply changing when El Nino or La Nina occur. The result showed that El Nino and La Nina did not influence paddy supply, while La Nina influenced maize supply in Java. Maize supply increased when La Nina occurred.

2022 ◽  
Author(s):  
Paul C. Rivera

An alternative physical mechanism is proposed to describe the occurrence of the episodic El Nino Southern Oscillation (ENSO) and La Nina climatic phenomena. This is based on the earthquake-perturbed obliquity change (EPOCH) model previously discovered as a major cause of the global climate change problem. Massive quakes impart a very strong oceanic force that can move the moon which in turn pulls the earth’s axis and change the planetary obliquity. Analysis of the annual geomagnetic north-pole shift and global seismic data revealed this previously undiscovered force. Using a higher obliquity in the global climate model EdGCM and constant greenhouse gas forcing showed that the seismic-induced polar motion and associated enhanced obliquity could be the major mechanism governing the mysterious climate anomalies attributed to El Nino and La Nina cycles.


2013 ◽  
Vol 5 (2) ◽  
pp. 148-161 ◽  
Author(s):  
Iván J. Ramírez ◽  
Sue C. Grady ◽  
Michael H. Glantz

Abstract In the 1990s Peru experienced the first cholera epidemic after almost a century. The source of emergence was initially attributed to a cargo ship, but later there was evidence of an El Niño association. It was hypothesized that marine ecosystem changes associated with El Niño led to the propagation of V. cholerae along the coast of Peru, which in turn initiated the onset of the epidemic in 1991. Earlier studies supported this explanation by demonstrating a relationship between elevated temperatures and increased cholera incidence in Peru; however, other aspects of El Niño–Southern Oscillation (ENSO) and their potential impacts on cholera were not investigated. Therefore, this study examines the relationship between El Niño and cholera in Peru from a holistic view of the ENSO cycle. A “climate affairs” approach is employed as a conceptual framework to incorporate ENSO’s multidimensional nature and to generate new hypotheses about the ENSO and cholera association in Peru. The findings reveal that ENSO may have been linked to the cholera epidemic through multiple pathways, including rainfall extremes, La Niña, and social vulnerability, with impacts depending on the geography of teleconnections within Peru. When the definition of an ENSO event is examined, cholera appears to have emerged either during ENSO neutral or La Niña conditions. Furthermore, the analysis herein suggests that the impact of El Niño arrived much later, possibly resulting in heightened transmission in the austral summer of 1992. In conclusion, a modified hypothesis with these new insights on cholera emergence and transmission in Peru is presented.


2021 ◽  
Author(s):  
David Henriques da Matta ◽  
Caio Augusto dos Santos Coelho ◽  
Leydson Lara dos Santos ◽  
Luis Fernando Stone ◽  
Alexandre Bryan Heinemann

Abstract Rainfall and temperature are the two key parameters of crop development. Studying the characteristics of these parameters under El Niño-Southern Oscillation (ENSO) conditions is important to better understand the impacts of the different phases of this phenomenon (El Niño, Neutral, and La Niña conditions) on agriculture. This study analyzes 32 years (1980–2011) of climatic data from 128 weather stations across Goiás State in Brazil to determine the behavior of temperature and rainfall time series over three periods (1980–1989; 1990–1999 and 2000–2011) under El Niño, Neutral, and La Niña conditions. The analysis revealed no major impacts of ENSO conditions on accumulated rainfall characteristics, a feature particularly marked in the most recent period (2000–2011). ENSO impacting temperature was identified but presented considerable variability across the periods investigated. These impacts were marked in the first two periods as for maximum temperature and increased from the first to the last period as for minimum temperature. These features were noticed in both analyses in the entire Goiás State and most of the investigated mega-regions, except for the East and Northeast mega-regions as for minimum temperature. There were increases in maximum temperature values throughout the rainfed season (October to March) for all ENSO conditions and investigated periods. Minimum temperature also increased across the three investigated periods, and this was marked in the beginning of the rainfed season (October) under El Niño and Neutral conditions.


2017 ◽  
pp. 89 ◽  
Author(s):  
J. M. Valencia ◽  
C. E. García ◽  
D. Montero

<p>The main factors affecting the production and yield of sugarcane are variety, agronomic management, soil type and climate, of which the first three there is some control, while the climate is one factor of which you cannot have any control, therefore, it should be monitored. Colombia, being located in the equatorial pacific, is affected by two atmospheric oceanic phenomena known as “El Niño” and “La Niña”, which make up the climatic phenomenon of ENSO (El Niño-Southern Oscillation) and affect the quantity and the number of days with rainfall and influences the production of sugarcane. The objective of this work is to identify spatially and temporally the zones with greater and lower impact of the ENSO phenomenon in the cultivation of sugarcane in Colombia through the use of the Standard Vegetation Index (SVI) and the Rainfall Anomally Index (RAI) using EVI/MODIS images and precipitation data from meteorological stations on a quarterly basis for the period 2000-2015. A similar trend was found between both indices in the “El Niño” and “Neutral” seasons, while in the “La Niña” season the RAI tended to rise while the SVI decreased when the RAI was very high, this tendency being much more marked in areas with floods caused by the overflow of the main rivers. In addition, a comparison was made between the SVI index and a productivity anomaly index (IAP), finding a direct correlation between both (R<sup>2</sup> = 0.4, p&lt;0.001). This work showed that through the use of vegetation indexes, a temporal analysis of the impact of climate on an agricultural crop can be carried out, especially with ENSO conditions.</p>


2017 ◽  
Author(s):  
Chaim I. Garfinkel ◽  
Amit Gordon ◽  
Luke D. Oman ◽  
Feng Li ◽  
Sean Davis ◽  
...  

Abstract. A series of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model are analyzed in order to assess interannual and sub-decadal variability in tropical lower stratospheric temperature and water vapor over the past 35 years. The impact of El Niño-Southern Oscillation in this region is nonlinear. While moderate El Niño events lead to cooling in this region, strong El Niño events appear to lead to warming, even as the response of the large scale Brewer Dobson Circulation appears to scale nearly linearly with El Niño. The tropospheric warming associated with strong El Niño events extends into the tropical tropopause layer and up to the cold point, where it allows for more water vapor to enter the stratosphere. The net effect is that both strong La Niña and strong El Niño events lead to enhanced entry water vapor and stratospheric moistening. These results lead to the following interpretation of the millennial drop in water vapor in 2001: the very strong El Niño event in 1997/1998 followed by more than two consecutive years of La Niña led to enhanced lower stratospheric water vapor. As this period ended in early 2001, entry water vapor concentrations declined. The net effect is that sea surface temperature variability led to a decrease in water vapor of 0.14 ppmv after 2001, which accounts for approximately 23&amp;thinsp.% of the observed drop.


2012 ◽  
Vol 25 (13) ◽  
pp. 4568-4581 ◽  
Author(s):  
Yukiko Imada ◽  
Masahide Kimoto

Abstract The impact of tropical instability waves (TIWs) on El Niño–Southern Oscillation (ENSO) characteristics is investigated by introducing a new parameterization of TIWs into an atmosphere–ocean general circulation model (AOGCM), the Model for Interdisciplinary Research on Climate (MIROC), with a medium-resolution (~1.4°) ocean model (known as MIROCmedres). Because this resolution is not sufficient to reproduce eddies at the spatial scale of TIWs, this approach isolates TIW effects from other factors that can affect ENSO characteristics. The parameterization scheme represents the effect of baroclinic eddy heat transport by TIWs. A 100-yr integration reveals a significant role of TIWs in observed ENSO asymmetry. Asymmetric heat transport associated with TIWs that are active (inactive) during La Niña (El Niño) generates a significant asymmetric negative feedback to ENSO and explains the observed asymmetric feature of a stronger-amplitude El Niño and weaker-amplitude La Niña. Furthermore, the parameterized eddy heat flux also affects the mean subsurface heat balance via the shallowing and steepening thermocline. This change in subsurface stratification induces a stronger thermocline feedback and a longer ENSO period.


2018 ◽  
Author(s):  
Xiaolu Yan ◽  
Paul Konopka ◽  
Felix Ploeger ◽  
Mengchu Tao ◽  
Rolf Müller ◽  
...  

Abstract. We analyze the influence of the El Niño Southern Oscillation (ENSO) on the atmospheric circulation and the mean ozone distribution in the tropical and sub-tropical UTLS region. In particular, we focus on the impact of ENSO on the onset of the Asian summer monsoon (ASM) anticyclone. Using the Multivariate ENSO Index, we define climatologies (composites) of atmospheric circulation and composition in the months following El Niño and La Niña (boreal) winters and investigate how ENSO-related flow anomalies propagate into spring and summer. To quantify differences in the divergent and non-divergent part of the flow, the velocity potential (VP) and the stream function (SF) respectively, are calculated from the ERA-Interim reanalysis around the tropical tropopause (potential temperature level θ=380 K). While VP quantifies the well-known ENSO anomalies of the Walker circulation, SF can be used to study the impact of ENSO on the formation of the ASM anticyclone which turns out to be slightly weaker after El Niño than after La Niña winters. In addition, stratospheric intrusions around the eastern flank of the anticyclone into the Tropical Tropopause Layer (TTL) are weaker in the months after strong El Niño events due to more zonally symmetric subtropical jets than after La Niña winters. By using satellite (MLS), in-situ (SHADOZ) observations and model simulations (CLaMS) of ozone, we discuss ENSO-induced differences around the tropical tropopause. Ozone composites show more zonally symmetric features with less in-mixed ozone from the stratosphere into the TTL during and after strong El Niño events and even during the formation of the ASM anticyclone. The difference between El Niño and La Niña composites becomes statistically insignificant in late summer.


2013 ◽  
Vol 26 (14) ◽  
pp. 5169-5182 ◽  
Author(s):  
Masamichi Ohba ◽  
Hideo Shiogama ◽  
Tokuta Yokohata ◽  
Masahiro Watanabe

Abstract The impact of strong tropical volcanic eruptions (SVEs) on the El Niño–Southern Oscillation (ENSO) and its phase dependency is investigated using a coupled general circulation model (CGCM). This paper investigates the response of ENSO to an idealized SVE forcing, producing a peak perturbation of global-mean surface shortwave radiation larger than −6.5 W m−2. Radiative forcing due to volcanic aerosols injected into the stratosphere induces tropical surface cooling around the volcanic forcing peak. Identical-twin forecast experiments of an ENSO-neutral year in response to an SVE forcing show an El Niño–like warming lagging one year behind the peak forcing. In addition to a reduced role of the mean subsurface water upwelling (known as the dynamical thermostat mechanism), the rapid land surface cooling around the Maritime Continent weakens the equatorial Walker circulation, contributing to the positive zonal gradient of sea surface temperature (SST) and precipitation anomalies over the equatorial Pacific. Since the warm and cold phases of ENSO exhibit significant asymmetry in their transition and duration, the impact of a SVE forcing on El Niño and La Niña is also investigated. In the warm phase of ENSO, the prediction skill of the SVE-forced experiments rapidly drops approximately six months after the volcanic peak. Since the SVE significantly facilitates the duration of El Niño, the following transition from warm to cold ENSO is disrupted. The impact of SVE forcing on La Niña is, however, relatively weak. These results imply that the intensity of a dynamical thermostat-like response to a SVE could be dependent on the phase of ENSO.


2021 ◽  
Vol 8 ◽  
Author(s):  
Aliashim Albani ◽  
Mohd Zamri Ibrahim ◽  
Siti Syazwani Abdul Ghani ◽  
Muhammad Zulkifli Mat Rofi ◽  
Puteri Nurfarah Adawiyah Taslin

Malaysia has launched initiatives for utilizing renewable energy (RE) as a source of electricity since 2011 by establishing renewable energy-related laws and policies. Malaysia's geographical location and climate have led to a limited amount of intermittent RE resources. Thus, a more thorough study of the various factors affecting the RE-based electricity generation is needed for energy output optimization. This article aims to understand the impact of El Niño-Southern Oscillation (ENSO) events on wind and solar reanalysis datasets using the Wavelet Transform. The thirty-year ERA5 solar and wind datasets were used in the study, together with the multivariate ENSO Index (MEI). As a result, the selected sites experienced an increase in solar irradiation during moderate to very strong El Niño and a decrease during the La Niña period. The wind speed increases during La Niña and decreases during El Niño, with the exception of the high wind speed during the Northeast monsoon season. Also, there was a significant coherence relationship between the wind and solar datasets with the ENSO index at a specified period. Therefore, the ENSO is essential as an input factor for future development plans for wind and solar power, energy predictions, and risk assessment.


2021 ◽  
Author(s):  
Nicholas L. Tyrrell ◽  
Juho M. Koskentausta ◽  
Alexey Yu. Karpechko

Abstract. The number of sudden stratospheric warmings (SSWs) per year is affected by the phase of the El Niño–Southern Oscillation (ENSO), yet there are discrepancies between the observed and modeled relationship. We investigate how systematic model biases may affect the ENSO-SSW connection. A two-step bias-correction process is applied to the troposphere, stratosphere or full atmosphere of an atmospheric general circulation model. ENSO type sensitivity experiments are then performed to reveal the impact of differing climatologies on the ENSO–SSW teleconnection. The number of SSWs per year is overestimated in the control run, and this statistic is improved when stratospheric biases are reduced. The seasonal cycle of SSWs is also improved by the bias corrections. The composite SSW responses in the stratospheric zonal wind, geopotential height and surface response are well represented in both the control and bias corrected runs. The model response of SSWs to ENSO phase is more linear than in observations, in line with previous modelling studies, and this is not changed by the reduced biases. However, the trend of more wave-1 events during El Niño years than La Niña years is improved in the bias corrected runs.


Sign in / Sign up

Export Citation Format

Share Document