Passive cancellation loops: Case study, model simulation and field test on a real HV overhead line in Italy: Electromagnetic computation and optimization

Author(s):  
M. Rebolini ◽  
M. Forteleoni ◽  
D. Capra
2021 ◽  
Vol 6 (5) ◽  
pp. 62
Author(s):  
John Morris ◽  
Mark Robinson ◽  
Roberto Palacin

The ‘short’ neutral section is a feature of alternating current (AC) railway overhead line electrification that is often unreliable and a source of train delays. However hardly any dynamic analysis of its behaviour has been undertaken. This paper briefly describes the work undertaken investigating the possibility of modelling the behaviour using a novel approach. The potential for thus improving the performance of short neutral sections is evaluated, with particular reference to the UK situation. The analysis fundamentally used dynamic simulation of the pantograph and overhead contact line (OCL) interface, implemented using a proprietary finite element analysis tool. The neutral section model was constructed using physical characteristics and laboratory tests data, and was included in a validated pantograph/OCL simulation model. Simulation output of the neutral section behaviour has been validated satisfactorily against real line test data. Using this method the sensitivity of the neutral section performance in relation to particular parameters of its construction was examined. A limited number of parameter adjustments were studied, seeking potential improvements. One such improvement identified involved the additional inclusion of a lever arm at the trailing end of the neutral section. A novel application of pantograph/OCL dynamic simulation to modelling neutral section behaviour has been shown to be useful in assessing the modification of neutral section parameters.


2021 ◽  
Vol 893 (1) ◽  
pp. 012023
Author(s):  
Puji R A Sibuea ◽  
Dewi R Agriamah ◽  
Edi Riawan ◽  
Rusmawan Suwarman ◽  
Atika Lubis

Abstract Probable Maximum Flood (PMF) used in the design of hydrological structures reliabilities and safety which its value is obtained from the Probable Maximum Precipitation (PMP). The objectives of this study are to estimate PMP and PMF value in Upper Citarum Watershed and understand the impact from different PMP value to PMF value with two scenarios those are Scenario A and B. Scenario A will calculate the PMP value from each Global Satellite Mapping of Precipitation (GSMaP) rainfall data grid and Scenario B calculate the PMP value from the mean area rainfall. PMP value will be obtained by the statistical Hershfield method, and the PMF will be obtained by employed the PMP value as the input data in Gridded Surface Subsurface Hydrologic Analysis (GSSHA) hydrologic model. Model simulation results for PMF hydrographs from both scenarios show that spatial distribution of rainfall in the Upper Citarum watershed will affect the calculated discharge and whether Scenario A or B can be applied in the study area for PMP duration equal or higher than 72 hours. PMF peak discharge for Scenario A is averagely 13,12% larger than Scenario B.


Author(s):  
Siyuan Guo ◽  
Shoushou Zhang ◽  
Jian Zuo ◽  
Li Li ◽  
Ting Cui

2018 ◽  
Vol 22 (3) ◽  
pp. 1-25 ◽  
Author(s):  
Daniel Brown ◽  
Gerhard Reuter

Abstract The Athabasca oil sands development has created a land surface disturbance of almost 900 km2 in northeastern Alberta. Both through industrial processes and the removal of boreal forest vegetation, this surface disturbance impacts meteorology in the vicinity by releasing waste heat, raising the surface temperature, and lowering the surface humidity. To investigate the effects of the Athabasca oil sands development on thunderstorm intensity, initiation time, and duration, the Weather Research and Forecasting (WRF) Model was employed to simulate the effect of the surface disturbance on atmospheric conditions on 10 case study days. The results suggested the oil sands surface disturbance was not associated with substantial increases in thunderstorm intensity on any of the case study days. On two case study days, however, the WRF Model simulations differed substantially from the observed meteorological conditions and only approached the observations when the oil sands surface disturbance was included in the model simulation. Including the oil sands surface disturbance in the model simulations resulted in thunderstorm initiation about 2 h earlier and increased thunderstorm duration. Data from commercial aircraft showed that the 850–500-mb temperature difference was greater than 30°C (very unstable) only on these 2 days. Such cases are sufficiently rare that they are not expected to affect the overall thunderstorm climatology. Still, in these very unstable cases, the oil sands development appears to have a significant effect on thunderstorm initiation time and duration.


2020 ◽  
Vol 267 ◽  
pp. 105477
Author(s):  
Bin Zhang ◽  
Hanxun Wang ◽  
Lei Wang ◽  
Gang Mei ◽  
Lei Shi ◽  
...  

Author(s):  
Carlos Alberto Palacio-Tobón ◽  
Sara Cristina Vieria-Agudelo ◽  
Julio César Saldarriaga-Molina ◽  
Luis Miguel Ruíz-Jaramillo

This work describes a water quality model for heavy metals simulation in river systems. The proposed strategy comprises an 1D modeling approach with an ADZ-QUASAR extension to represent the behavior of heavy metals. This methodology seeks to strengthen their predictive capability based on the integration of variables which play an important role in the adsorption and desorption of these particles. The methodology was implemented in a reach of the Negro river (eastern side of Antioquia, Colombia), using Chromium, Copper and Nickel as heavy metals, because these are the heavy metals representative of the currents in the study area. Results are showing, with some degree of uncertainty, the capacity of the methodology to predict the behavior of environmental interesting substances, which makes it an important management tool.


2012 ◽  
Vol 518-523 ◽  
pp. 4155-4160
Author(s):  
Fei Ding ◽  
Takao Yamashita ◽  
Han Soo Lee

Precipitation and seawater level are the two important factors to be considered in seawater intrusion simulation. However, these data are lacking in some regions of the world. Thus, limits the study on seawater intrusion. Considering the lack of availability of data on precipitation and seawater level, an atmosphere–ocean-groundwater modeling system was constructed in this paper. In the modeling system, the atmosphere model (MM5) and the ocean model (POM) is used to simulate the precipitation and seawater level, respectively while the SEAWAT model is used for groundwater model simulation. The system is used for seawater intrusion simulation case study in the Liaodong Bay coastal plain. The study shows that the atmosphere–ocean-groundwater modeling system provides a very reasonable result.


Sign in / Sign up

Export Citation Format

Share Document