Data Calibration Algorithm for Artificial Lateral Line Sensor of Robotic Fish on Improved LSTM

Author(s):  
Yaming Ou ◽  
Zhuoliang Zhang ◽  
Chao Zhou ◽  
Bo Zhou
2013 ◽  
Vol 347-350 ◽  
pp. 1068-1073
Author(s):  
Wei Min Qi ◽  
Jie Xiao

In order to provide efficient and suitable services for users in a ubiquitous computing environment, many kinds of context information technologies have been researched. Wireless sensor networks are among the most popular technologies providing such information. Therefore, it is very important to guarantee the reliability of sensor data gathered from wireless sensor networks. However there are several factors associated with faulty sensor readings which make sensor readings unreliable. The research put forward classifying faulty sensor readings into sensor faults and measurement errors, then propose a novel in-network data calibration algorithm which includes adaptive fault checking, measurement error elimination and data refinement. The proposed algorithm eliminates faulty readings as well as refines normal sensor readings and increase reliability. The simulation study shows that the in-network data calibration algorithm is highly reliable and its network overhead is very low compared to previous works.


Author(s):  
Zhuoliang Zhang ◽  
Chao Zhou ◽  
Zhiqiang Cao ◽  
Min Tan ◽  
Long Cheng ◽  
...  

Abstract Underwater robot technology has made considerable progress in recent years. However, due to the harsh environment and noise in the flow field near the underwater robots, it is difficult to measure some basic parameters, including swimming speed. The traditional speed measurement methods for underwater robots have the disadvantages of being limited by the environment and bulky. In order to overcome these shortcomings, an artificial lateral line sensor based on cantilever structure was developed in this paper. According to the deformation of cantilever beam under water impact, the swimming speed of underwater robots can be measured. In addition, an "end-to-end" calibration algorithm was proposed to calibrate the artificial lateral line sensor in the noisy environment, avoiding the complicated noise modeling and filter design process. To reduce the risk of overfitting, a hybrid loss function based on physical model was adopted. Compared with the classical calibration method, our method can reduce the error by 47.8%. Our sensor achieved an average absolute error of 0.07897 m/s, and can measure water speed up to 3 m/s.


Sign in / Sign up

Export Citation Format

Share Document