Environmental building monitoring and control based on machine learning and fog computing on an IoT architecture

Author(s):  
Rafael L. Patrao ◽  
Francisco L. de Caldas Filho ◽  
Lucas M. C. e Martins ◽  
Gerson do N. Silva ◽  
Matheus S. Monteiro ◽  
...  
Author(s):  
Shuping Dang ◽  
Guoqing Ma ◽  
Basem Shihada ◽  
Mohamed-Slim Alouini

<pre>The smart building (SB), a promising solution to the fast-paced and continuous urbanization around the world, is an integration of a wide range of systems and services and involves a construction of multiple layers. The SB is capable of sensing, acquiring and processing a tremendous amount of data as well as performing proper action and adaptation accordingly. With rapid increases in the number of connected nodes and thereby the data transmission demand in SBs, conventional transmission and processing techniques are insufficient to provide satisfactory services. To enhance the intelligence of SBs and achieve efficient monitoring and control, both indoor visible light communications (VLC) and machine learning (ML) shall be applied jointly to construct a reliable data transmission network with powerful data processing and reasoning abilities. In this regard, we envision an SB framework enabled by indoor VLC and ML in this article.</pre>


2017 ◽  
Vol 19 (4) ◽  
pp. 1-12 ◽  
Author(s):  
Maggi Bansal ◽  
Inderveer Chana ◽  
Siobhan Clarke

The recent advent of Internet of Things (IoT), has given rise to a plethora of smart verticals- smart homes being one of them. Smart Home is a classic example of IoT, wherein smart appliances connected via home gateways constitute a local home network to assist people in activities of daily life. Smart Home involves IoT-based automation (such as smart lighting, heating, surveillance etc.), remote monitoring and control of smart appliances. Besides automation, human-in-the-loop is a unique characteristic of Smart home to offer personalized services. Understanding the human behavior requires context processing. Thus, enablement of Smart home involves two prominent technologies IoT and context-aware computing. Further, local devices lying in the smart home have the implicit location and situational information, hence fog computing can offer real-time smart home services. In this paper, the authors propose ICON (IoT-based CONtext-aware) framework for context-aware IoT applications such as smart home, further ICON leverages fog-based IoT middleware to perform context-aware processing.


Sensors ◽  
2017 ◽  
Vol 17 (4) ◽  
pp. 807 ◽  
Author(s):  
Jude Adeleke ◽  
Deshendran Moodley ◽  
Gavin Rens ◽  
Aderemi Adewumi

2021 ◽  
Vol 11 (24) ◽  
pp. 11910
Author(s):  
Dalia Mahmoud ◽  
Marcin Magolon ◽  
Jan Boer ◽  
M.A Elbestawi ◽  
Mohammad Ghayoomi Mohammadi

One of the main issues hindering the adoption of parts produced using laser powder bed fusion (L-PBF) in safety-critical applications is the inconsistencies in quality levels. Furthermore, the complicated nature of the L-PBF process makes optimizing process parameters to reduce these defects experimentally challenging and computationally expensive. To address this issue, sensor-based monitoring of the L-PBF process has gained increasing attention in recent years. Moreover, integrating machine learning (ML) techniques to analyze the collected sensor data has significantly improved the defect detection process aiming to apply online control. This article provides a comprehensive review of the latest applications of ML for in situ monitoring and control of the L-PBF process. First, the main L-PBF process signatures are described, and the suitable sensor and specifications that can monitor each signature are reviewed. Next, the most common ML learning approaches and algorithms employed in L-PBFs are summarized. Then, an extensive comparison of the different ML algorithms used for defect detection in the L-PBF process is presented. The article then describes the ultimate goal of applying ML algorithms for in situ sensors, which is closing the loop and taking online corrective actions. Finally, some current challenges and ideas for future work are also described to provide a perspective on the future directions for research dealing with using ML applications for defect detection and control for the L-PBF processes.


Author(s):  
Mariana Matulovic ◽  
Flávio José de Oliveira Morais ◽  
Angela Vacaro de Souza ◽  
Cleber Aalexandre de Amorim ◽  
Luiz Fernando Sommaggio Coletta

Articulate the most diverse and sophisticated technologies, such as Remote Sensing, Big Data, Cloud Computing, Internet of Things, 3D Printing, among others, is part of universe 4.0, whether industrial or agricultural. Focusing on agricultural context, this paper proposes a low-cost 4.0 device to perform the monitoring and control of certain environmental variables for the detection of aflatoxins in peanut crops. Aflatoxins are toxic metabolite of fungi genus Aspergillus that can cause toxic and carcinogenic effects in humans and animals. The device developed was able to monitor temperature and humidity variations helping the aflatoxins identification. The equipment portability allows its use in silos with encapsulation via Additive Manufacturing, besides the aflatoxin prediction from Machine Learning algorithms.


2020 ◽  
Author(s):  
Riya Tapwal ◽  
Nitin Gupta ◽  
Qin Xin

<div>IoT devices (wireless sensors, actuators, computer devices) produce large volume and variety of data and the data</div><div>produced by the IoT devices are transient. In order to overcome the problem of traditional IoT architecture where</div><div>data is sent to the cloud for processing, an emerging technology known as fog computing is proposed recently.</div><div>Fog computing brings storage, computing and control near to the end devices. Fog computing complements the</div><div>cloud and provide services to the IoT devices. Hence, data used by the IoT devices must be cached at the fog nodes</div><div>in order to reduce the bandwidth utilization and latency. This chapter discusses the utility of data caching at the</div><div>fog nodes. Further, various machine learning techniques can be used to reduce the latency by caching the data</div><div>near to the IoT devices by predicting their future demands. Therefore, this chapter also discusses various machine</div><div>learning techniques that can be used to extract the accurate data and predict future requests of IoT devices.</div>


Sign in / Sign up

Export Citation Format

Share Document