Larger Torque Production Method for Multi-Phase MATRIX Motor Using Online Air-Gap Flux Density Control

Author(s):  
Shunya Sakamoto ◽  
Yudai Okajima ◽  
Kan Akatsu
Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 496 ◽  
Author(s):  
Vladimir Kindl ◽  
Radek Cermak ◽  
Zelmira Ferkova ◽  
Bohumil Skala

Modern multiphase electric machines take advantage of additional degrees of freedom for various purposes, including harmonic current injection to increase torque per ampere. This new approach introduces a non-sinusoidal air gap flux density distribution causing additional technical problems and so the conventional assumptions need to be revised. The paper presents a methodology for synthesis of air gap magnetic field generated by a symmetrically distributed multiphase windings including the rotor field reaction due to the machine’s load. The proposed method is suitable either for single-layer or double layer windings and can be adopted either for full-pitched or chorded winding including slots effects. The article analyses the air gap flux density harmonic content and formulates conclusions important to multiphase induction motors. It also discusses effects of time harmonic currents and illustrates the principle of changing number of pole-pairs typical for harmonic currents being injected to increase torque.


Author(s):  
Jianqi Li ◽  
Yu Zhou ◽  
Jianying Li

This paper presented a novel analytical method for calculating magnetic field in the slotted air gap of spoke-type permanent-magnet machines using conformal mapping. Firstly, flux density without slots and complex relative air-gap permeance of slotted air gap are derived from conformal transformation separately. Secondly, they are combined in order to obtain normalized flux density taking account into the slots effect. The finite element (FE) results confirmed the validity of the analytical method for predicting magnetic field and back electromotive force (BEMF) in the slotted air gap of spoke-type permanent-magnet machines. In comparison with FE result, the analytical solution yields higher peak value of cogging torque.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2522
Author(s):  
Guangdou Liu ◽  
Shiqin Hou ◽  
Xingping Xu ◽  
Wensheng Xiao

In the linear and planar motors, the 1D Halbach magnet array is extensively used. The sinusoidal property of the magnetic field deteriorates by analyzing the magnetic field at a small air gap. Therefore, a new 1D Halbach magnet array is proposed, in which the permanent magnet with a curved surface is applied. Based on the superposition of principle and Fourier series, the magnetic flux density distribution is derived. The optimized curved surface is obtained and fitted by a polynomial. The sinusoidal magnetic field is verified by comparing it with the magnetic flux density of the finite element model. Through the analysis of different dimensions of the permanent magnet array, the optimization result has good applicability. The force ripple can be significantly reduced by the new magnet array. The effect on the mass and air gap is investigated compared with a conventional magnet array with rectangular permanent magnets. In conclusion, the new magnet array design has the scalability to be extended to various sizes of motor and is especially suitable for small air gap applications.


2019 ◽  
Vol 81 (4) ◽  
Author(s):  
Hari Prasetijo ◽  
Winasis Winasis ◽  
Priswanto Priswanto ◽  
Dadan Hermawan

This study aims to observe the influence of the changing stator dimension on the air gap magnetic flux density (Bg) in the design of a single-phase radial flux permanent magnet generator (RFPMG). The changes in stator dimension were carried out by using three different wire diameters as stator wire, namely, AWG 14 (d = 1.63 mm), AWG 15 (d = 1.45 mm) and AWG 16 (d = 1.29 mm). The dimension of the width of the stator teeth (Wts) was fixed such that a larger stator wire diameter will require a larger stator outside diameter (Dso). By fixing the dimensions of the rotor, permanent magnet, air gap (lg) and stator inner diameter, the magnitude of the magnetic flux density in the air gap (Bg) can be determined. This flux density was used to calculate the phase back electromotive force (Eph). The terminal phase voltage (V∅) was determined after calculating the stator wire impedance (Z) with a constant current of 3.63 A. The study method was conducted by determining the design parameters, calculating the design variables, designing the generator dimensions using AutoCad and determining the magnetic flux density using FEMM simulation.  The results show that the magnetic flux density in the air gap and the phase back emf Eph slightly decrease with increasing stator dimension because of increasing reluctance. However, the voltage drop is more dominant when the stator coil wire diameter is smaller. Thus, a larger diameter of the stator wire would allow terminal phase voltage (V∅) to become slightly larger. With a stator wire diameter of 1.29, 1.45 and 1.63 mm, the impedance values of the stator wire (Z) were 9.52746, 9.23581 and 9.06421 Ω and the terminal phase voltages (V∅) were 220.73, 221.57 and 222.80 V, respectively. Increasing the power capacity (S) in the RFPMG design by increasing the diameter (d) of the stator wire will cause a significant increase in the percentage of the stator maximum current carrying capacity wire but the decrease in stator wire impedance is not significant. Thus, it will reduce the phase terminal voltage (V∅) from its nominal value.


Sign in / Sign up

Export Citation Format

Share Document