Coding the Optical Pulse in TDM-FBG Sensors with Hybrid Simplex-and Golay Codes for SNR Improvement

Author(s):  
Mohd Saiful Dzulkefly Zan ◽  
Mohamed M. Elgaud ◽  
Ahmad Ashrif A. Bakar
Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4299
Author(s):  
Mohamed M. Elgaud ◽  
Mohd Saiful Dzulkefly Zan ◽  
Abdulfatah A. G. Abushagur ◽  
Abdulwahhab E. Hamzah ◽  
Mohd Hadri Hafiz Mokhtar ◽  
...  

For almost a half-decade, the unique autocorrelation properties of Golay complementary pairs (GCP) have added a significant value to the key performance of conventional time-domain multiplexed fiber Bragg grating sensors (TDM-FBGs). However, the employment of the unipolar form of Golay coded TDM-FBG has suffered from several performance flaws, such as limited improvement of the signal-to-noise ratio (SNIR), noisy backgrounds, and distorted signals. Therefore, we propose and experimentally implement several digital filtering techniques to mitigate such limitations. Moving averages (MA), Savitzky–Golay (SG), and moving median (MM) filters were deployed to process the signals from two low reflectance FBG sensors located after around 16 km of fiber. The first part of the experiment discussed the sole deployment of Golay codes from 4 bits to 256 bits in the TDM-FBG sensor. As a result, the total SNIR of around 8.8 dB was experimentally confirmed for the longest 256-bit code. Furthermore, the individual deployment of MA, MM, and SG filters within the mentioned decoded sequences secured a further significant increase in SNIR of around 4, 3.5, and 3 dB, respectively. Thus, the deployment of the filtering technique alone resulted in at least four times faster measurement time (equivalent to 3 dB SNIR). Overall, the experimental analysis confirmed that MM outperformed the other two techniques in better signal shape, fastest signal transition time, comparable SNIR, and capability to maintain high spatial resolution.


1988 ◽  
Vol 102 ◽  
pp. 243-246
Author(s):  
J.T. Costello ◽  
W.G. Lynam ◽  
P.K. Carroll

AbstractThe dual laser-produced plasma technique for the study of ionic absorption spectra has been developed by the use of two Q-switched ruby lasers to enable independent generation of the absorbing and back-lighting plasmas. Optical pulse handling is used in the coupling cicuits to enable reproducible pulse delays from 250 nsec. to 10 msec, to be achieved. At delay times > 700 nsec. spectra of essentially pure neutral species are observed. The technique is valuable, not only for obtaining the neutral spectra of highly refractory and/or corrosive materials but also for studying behaviour of ionic species as a function of time. Typical spectra are shown in Fig. 1.


2018 ◽  
Vol 8 (5) ◽  
pp. 129-132
Author(s):  
V.V. Panichev ◽  
◽  
N.A. Solovyov ◽  
A.M. Semyonov ◽  
◽  
...  

2018 ◽  
Vol 1 (3) ◽  
pp. 2
Author(s):  
José Stênio De Negreiros Júnior ◽  
Daniel Do Nascimento e Sá Cavalcante ◽  
Jermana Lopes de Moraes ◽  
Lucas Rodrigues Marcelino ◽  
Francisco Tadeu De Carvalho Belchior Magalhães ◽  
...  

Simulating the propagation of optical pulses in a single mode optical fiber is of fundamental importance for studying the several effects that may occur within such medium when it is under some linear and nonlinear effects. In this work, we simulate it by implementing the nonlinear Schrödinger equation using the Split-Step Fourier method in some of its approaches. Then, we compare their running time, algorithm complexity and accuracy regarding energy conservation of the optical pulse. We note that the method is simple to implement and presents good results of energy conservation, besides low temporal cost. We observe a greater precision for the symmetrized approach, although its running time can be up to 126% higher than the other approaches, depending on the parameters set. We conclude that the time window must be adjusted for each length of propagation in the fiber, so that the error regarding energy conservation during propagation can be reduced.


2019 ◽  
Vol 9 (2) ◽  
pp. 192-197
Author(s):  
Somrita Ghosh ◽  
Aritra Acharyya

Background: The time and frequency responses of Multiple Quantum Barrier (MQB) nano-scale Avalanche Photodiodes (APDs) based on Si~3C-SiC material system have been investigated in this final part. Methods: A very narrow rectangular pulse of pulse-width of 0.4 ps has been used as the input optical pulse having 850 nm wavelength incidents on the p+-side of the MQB APD structures and corresponding current responses have been calculated by using a simulation method developed by the authors. Results: Finally the frequency responses of the devices are obtained via the Fourier transform of the corresponding pulse current responses in time domain. Conclusion: Simulation results show that MQB nano-APDs possess significantly faster time response and wider frequency response as compared to the flat Si nano-APDs under similar operating conditions.


Sign in / Sign up

Export Citation Format

Share Document