Forecasting Electricity Demand with Dynamic Characteristics Based on Signal Analysis and Machine Learning

Author(s):  
Masato Utsumi ◽  
Ikuo Shigemori ◽  
Tohru Watanabe
Author(s):  
Chunyan Ji ◽  
Thosini Bamunu Mudiyanselage ◽  
Yutong Gao ◽  
Yi Pan

AbstractThis paper reviews recent research works in infant cry signal analysis and classification tasks. A broad range of literatures are reviewed mainly from the aspects of data acquisition, cross domain signal processing techniques, and machine learning classification methods. We introduce pre-processing approaches and describe a diversity of features such as MFCC, spectrogram, and fundamental frequency, etc. Both acoustic features and prosodic features extracted from different domains can discriminate frame-based signals from one another and can be used to train machine learning classifiers. Together with traditional machine learning classifiers such as KNN, SVM, and GMM, newly developed neural network architectures such as CNN and RNN are applied in infant cry research. We present some significant experimental results on pathological cry identification, cry reason classification, and cry sound detection with some typical databases. This survey systematically studies the previous research in all relevant areas of infant cry and provides an insight on the current cutting-edge works in infant cry signal analysis and classification. We also propose future research directions in data processing, feature extraction, and neural network classification fields to better understand, interpret, and process infant cry signals.


Author(s):  
Rodrigo Porteiro ◽  
Luis Hernández-Callejo ◽  
Sergio Nesmachnow

This article presents electricity demand forecasting models for industrial and residential facilities, developed using ensemble machine learning strategies. Short term electricity demand forecasting is beneficial for both consumers and suppliers, as it allows improving energy efficiency policies and the rational use of resources. Computational intelligence models are developed for day-ahead electricity demand forecasting. An ensemble strategy is applied to build the day-ahead forecasting model based on several one-hour models. Three steps of data preprocessing are carried out, including treating missing values, removing outliers, and standardization. Feature extraction is performed to reduce overfitting, reducing the training time and improving the accuracy. The best model is optimized using grid search strategies on hyperparameter space. Then, an ensemble of 24 instances is generated to build the complete day-ahead forecasting model. Considering the computational complexity of the applied techniques, they are developed and evaluated on the National Supercomputing Center (Cluster-UY), Uruguay. Three different real data sets are used for evaluation: an industrial park in Burgos (Spain), the total electricity demand for Uruguay, and demand from a distribution substation in Montevideo (Uruguay). Standard performance metrics are applied to evaluate the proposed models. The main results indicate that the best day ahead model based on ExtraTreesRegressor has a mean absolute percentage error of 2:55% on industrial data, 5:17% on total consumption data and 9:09% on substation data. 


Author(s):  
Amir Mosavi ◽  
Sina Faizollahzadeh Ardabili ◽  
Shahabodin Shamshirband

Electricity demand prediction is vital for energy production management and proper exploitation of the present resources. Recently, several novel machine learning (ML) models have been employed for electricity demand prediction to estimate the future prospects of the energy requirements. The main objective of this study is to review the various ML models applied for electricity demand prediction. Through a novel search and taxonomy, the most relevant original research articles in the field are identified and further classified according to the ML modeling technique, perdition type, and the application area. A comprehensive review of the literature identifies the major ML models, their applications and a discussion on the evaluation of their performance. This paper further makes a discussion on the trend and the performance of the ML models. As the result, this research reports an outstanding rise in the accuracy, robustness, precision and the generalization ability of the prediction models using the hybrid and ensemble ML algorithms.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Palash Rai ◽  
Rahul Kaushik

Abstract A technique for the estimation of an optical signal-to-noise ratio (OSNR) using machine learning algorithms has been proposed. The algorithms are trained with parameters derived from eye-diagram via simulation in 10 Gb/s On-Off Keying (OOK) nonreturn-to-zero (NRZ) data signal. The performance of different machine learning (ML) techniques namely, multiple linear regression, random forest, and K-nearest neighbor (K-NN) for OSNR estimation in terms of mean square error and R-squared value has been compared. The proposed methods may be useful for intelligent signal analysis in a test instrument and to monitor optical performance.


Sign in / Sign up

Export Citation Format

Share Document