Human micro-Doppler intensity transformation for gait velocity estimation

Author(s):  
Vineet Singh ◽  
Somak Bhattacharyya ◽  
Pradip K. Jain
2016 ◽  
Vol 16 (16) ◽  
pp. 6351-6358 ◽  
Author(s):  
Rajib Rana ◽  
Daniel Austin ◽  
Peter G. Jacobs ◽  
Mohanraj Karunanithi ◽  
Jeffrey Kaye

2020 ◽  
Vol 140 (9) ◽  
pp. 1082-1090
Author(s):  
Hiroyuki Nakagomi ◽  
Yoshihiro Fuse ◽  
Yasuki Nagata ◽  
Hironaga Miyamoto ◽  
Masashi Yokotsuka ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dennis Pantke ◽  
Florian Mueller ◽  
Sebastian Reinartz ◽  
Fabian Kiessling ◽  
Volkmar Schulz

AbstractChanges in blood flow velocity play a crucial role during pathogenesis and progression of cardiovascular diseases. Imaging techniques capable of assessing flow velocities are clinically applied but are often not accurate, quantitative, and reliable enough to assess fine changes indicating the early onset of diseases and their conversion into a symptomatic stage. Magnetic particle imaging (MPI) promises to overcome these limitations. Existing MPI-based techniques perform velocity estimation on the reconstructed images, which restricts the measurable velocity range. Therefore, we developed a novel velocity quantification method by adapting the Doppler principle to MPI. Our method exploits the velocity-dependent frequency shift caused by a tracer motion-induced modulation of the emitted signal. The fundamental theory of our method is deduced and validated by simulations and measurements of moving phantoms. Overall, our method enables robust velocity quantification within milliseconds, with high accuracy, no radiation risk, no depth-dependency, and extended range compared to existing MPI-based velocity quantification techniques, highlighting the potential of our method as future medical application.


Sign in / Sign up

Export Citation Format

Share Document