scholarly journals Dynamics of dry matter and selenium accumulation in oilseed rape (Brassica napus L.) in response to organic and inorganic selenium treatments

2015 ◽  
Vol 24 (2) ◽  
pp. 104-117 ◽  
Author(s):  
Nashmin Ebrahimi ◽  
Helinä Hartikainen ◽  
Asko Simojoki ◽  
Roghieh Hajiboland ◽  
Mervi M Seppänen

The uptake by and subsequent translocation of selenium (Se) within the plant is dependent on its chemical from and soil properties that dictate this trace element’s bioavailability. Plant species differ in their tendency to accumulate Se. Se taken-up by plants is returned to soil in plant residues, but the bioavailability of organic Se in those residues is poorly known. We investigated the impact of inorganic (Na2SeO4), organic (Se-enriched stem and leaf residues) Se applications and also soil microbial respiration on the growth and Se concentrations of various plant organs of oilseed rape (Brassica napus L.) during its development from the rosette to the seed filling stage. Both inorganic and organic Se slightly improved plant growth and enhanced plant development. Inorganic Se was more bioavailable than the organic forms and resulted in 3-fold to 6-fold higher Se concentrations in the siliques. Inorganic Se in autoclaved soil tended to elevate the Se concentration in all plant parts and at all growth stages. The organic Se raised Se concentrations in plants much less effectively than the inorganic selenate. Therefore, the use of inorganic Se is still recommended for biofortification.

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2475
Author(s):  
Grażyna B. Dąbrowska ◽  
Zuzanna Garstecka ◽  
Alina Trejgell ◽  
Henryk P. Dąbrowski ◽  
Wiktoria Konieczna ◽  
...  

Inoculation of plants with fungi has been shown to increase yields by improving germination, seedling vigor, plant growth, root morphogenesis, photosynthesis, and flowering through direct or indirect mechanisms. These mechanisms include solubilization and mineralization of nutrients, facilitating their uptake by plants, regulation of hormone balance, production of volatile organic compounds and microbial enzymes, suppression of plant pathogens, and mitigation of abiotic stresses. In the presented experiments, the effect of selected forest soil fungi on the growth and development of Brassica napus L. seedlings was investigated. Inoculation was carried out in vivo and in pot experiments with ectomycorrhizal and saprophytic fungi typical of forest soils: Collybia tuberosa, Clitocybe sp., Laccaria laccata, Hebeloma mesophaeum, and Cyathusolla. It was shown that all analyzed fungi produced IAA. In the in vitro experiment, B. napus inoculated with L. laccata showed stimulated root growth and greater number of leaves compared to control plants. A similar stimulatory effect on lateral root formation was observed in cuttings grown in pots in the presence of the C. olla fungus. In the pot experiment, the seedlings inoculated with the L. laccata fungus also showed increased growth of shoots and biomass. The effect of inoculation with the tested fungal strains, especially C. olla, on the growth and development of oilseed rape was probably indirect, as it also contributed to an increase in the number of microorganisms, especially soil bacteria. The expression of the metallothioneins in B. napus (BnMT1-BnMT3) varied depending on the fungal species. The presence of C. olla significantly increased BnMT2 expression in oilseed rape. It was found that BnMT1 expression increased and BnMT3 transcripts decreased in plants growing in the presence of L. laccata. This indicates the involvement of BnMT in the adaptation of oilseed rape to growth in fungi presence.


Plants ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 12 ◽  
Author(s):  
Philippe D’Hooghe ◽  
Dimitri Picot ◽  
Sophie Brunel-Muguet ◽  
Stanislav Kopriva ◽  
Jean-Christophe Avice ◽  
...  

In oilseed rape (Brassica napus L.), sulphur (S) limitation leads to a reduction of seed yield and nutritional quality, but also to a reduction of seed viability and vigour. S metabolism is known to be involved in the control of germination sensu stricto and seedling establishment. Nevertheless, how the germination and the first steps of plant growth are impacted in seeds produced by plants subjected to various sulphate limitations remains largely unknown. Therefore, this study aimed at determining the impact of various S-limited conditions applied to the mother plants on the germination indexes and the rate of viable seedlings in a spring oilseed rape cultivar (cv. Yudal). Using a 34S-sulphate pulse method, the sulphate uptake capacity during the seedling development was also investigated. The rate of viable seedlings was significantly reduced for seeds produced under the strongest S-limited conditions. This is related to a reduction of germination vigour and to perturbations of post-germinative events. Compared to green seedlings obtained from seeds produced by well-S-supplied plants, the viable seedlings coming from seeds harvested on plants subjected to severe S-limitation treatment showed nonetheless a higher dry biomass and were able to enhance the sulphate uptake by roots and the S translocation to shoots.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 68
Author(s):  
Mariusz Stepaniuk ◽  
Aleksandra Głowacka

The objective of this study was to assess the yield efficiency of sulphur-enhanced fertilisers, depending on the dose and application method, in a short-lived (three-year) monoculture of winter oilseed rape under the climate and soil conditions of south-eastern Poland. The experiment was carried out between 2010 and 2013 on winter oilseed rape (Brassica napus L. var. napus) of the Orlando variety, fertilised with different sulphur doses—0, 20, 40 or 60 kg S ha−1 applied in different method—soil application sowing, foliar application in the spring, and soil application sowing + foliar application in the spring (combined application). Following the harvest, seed and straw yields and the content of macroelements (N, S, P, K, Ca and Mg) in the seed and straw samples were determined. The harvest indices were also established for each of these elements. The impact of sulphur on winter oilseed rape yield depended significantly on both the dose and the application method. Even at the lowest dose (20 kg·ha−1), sulphur materially increased seed yield, regardless of the application method. With autumn soil application and foliar application, differences between the lowest dose and the higher doses (40 and 60 kg·ha−1) were not significant. However, with combined application, the highest dose (60 kg·ha−1) significantly increased yield compared to the lower doses. In general, all the fertilisation approaches significantly increased the N, P, K, Ca and Mg contents compared to the control sample, but the differences between them were not substantial. Each of the sulphur application approaches decreased the harvest index for sulphur. The foliar application of each of the doses decreased the harvest indices for N, P, K and Ca. The soil application of 20 kg·ha−1, and the mixed application of 40 and 60 kg·ha−1, all increased the harvest indices for P, K and Ca.


2021 ◽  
Vol 13 (10) ◽  
pp. 5704
Author(s):  
Renata Cinkocki ◽  
Nikola Lipková ◽  
Soňa Javoreková ◽  
Jana Petrová ◽  
Jana Maková ◽  
...  

Inoculation of Streptomyces to improve oilseed rape (Brassica napus L.) yields and minimise the use of chemical fertilisers is a promising sustainable strategy. In this study, we isolated 72 actinobacterial strains from rhizosphere of oilseed rape and maize and from bulk soil for screening and characterising their antimicrobial activity. Nine promising strains, identified as Streptomyces sp. by morphology, physiological characteristics, and 16S rRNA gene sequencing, were selected for their plant growth-promoting traits and in planta experiments. The actinobacterial strains were positive for IAA production, siderophore production, and HCN production. In planta experiments were conducted by soaking the oilseed rape seeds in the actinobacterial suspension, followed by plant growth under controlled conditions in a cultivate chamber (22–28 °C, 8 h dark/16 h light, constant humidity 80%). We recorded root and shoot length (cm) and seedling fresh weight (g). For most of the abovementioned parameters, a significant enhancement was observed with strain KmiRC20A118 treatment. The length of the root increased by 53.14%, the shoot length increased by 65.6%, and the weight of the fresh plant by 60% compared to the control. The integrated application of PGPS (Plant Growth Promoting Streptomyces) from the rhizosphere of oilseed rape is a promising strategy to improve the growth of oilseed rape.


2020 ◽  
Vol 21 (22) ◽  
pp. 8740
Author(s):  
Daria Chlebek ◽  
Artur Pinski ◽  
Joanna Żur ◽  
Justyna Michalska ◽  
Katarzyna Hupert-Kocurek

Endophytic bacteria hold tremendous potential for use as biocontrol agents. Our study aimed to investigate the biocontrol activity of Pseudomonas fluorescens BRZ63, a new endophyte of oilseed rape (Brassica napus L.) against Rhizoctonia solani W70, Colletotrichum dematium K, Sclerotinia sclerotiorum K2291, and Fusarium avenaceum. In addition, features crucial for biocontrol, plant growth promotion, and colonization were assessed and linked with the genome sequences. The in vitro tests showed that BRZ63 significantly inhibited the mycelium growth of all tested pathogens and stimulated germination and growth of oilseed rape seedlings treated with fungal pathogens. The BRZ63 strain can benefit plants by producing biosurfactants, siderophores, indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and ammonia as well as phosphate solubilization. The abilities of exopolysaccharide production, autoaggregation, and biofilm formation additionally underline its potential to plant colonization and hence biocontrol. The effective colonization properties of the BRZ63 strain were confirmed by microscopy observations of EGFP-expressing cells colonizing the root surface and epidermal cells of Arabidopsis thaliana Col-0. Genome mining identified many genes related to the biocontrol process, such as transporters, siderophores, and other secondary metabolites. All analyses revealed that the BRZ63 strain is an excellent endophytic candidate for biocontrol of various plant pathogens and plant growth promotion.


Planta ◽  
2004 ◽  
Vol 221 (3) ◽  
pp. 328-338 ◽  
Author(s):  
Jens Tilsner ◽  
Nina Kassner ◽  
Christine Struck ◽  
Gertrud Lohaus

1997 ◽  
Vol 150 (4) ◽  
pp. 414-419 ◽  
Author(s):  
Jeroen A. Wilmer ◽  
Johannes P.F.G. Helsper ◽  
Linus H.W. van der Plas

Sign in / Sign up

Export Citation Format

Share Document