scholarly journals Geostatistical prediction of clay percentage based on soil survey data

2002 ◽  
Vol 11 (4) ◽  
pp. 381-390
Author(s):  
A. TALKKARI ◽  
L. JAUHIAINEN ◽  
M. YLI-HALLA

In precision farming fields may be divided into management zones according to the spatial variation in soil properties. Clay content is an important soil characteristic, because it is associated with other soil properties that are important in management. Soil survey data from 150 sampling sites taken from an area of 218 ha were used to predict the spatial variation of clay percentage geostatistically in an agricultural soil in Jokioinen, Finland. The exponential and spherical models with a nugget component were fitted to the experimental variogram. This indicated that the medium-range pattern could be modelled, but the short-range variation could not, due to sparsity of sample points at short distances. The effect of sampling density on the kriging error was evaluated using the random simulation method. Kriging with a spherical model produced a map with smooth variation in clay percentage. The standard error of kriging estimates decreased only slightly when the density of samples was increased. The predictions were divided into three classes based on the clay percentage. Areas with clay content below 30%, between 30% and 60% and over 60% belong to non-clay, clay and heavy clay zones, respectively. With additional information from the soil samples on the contents of nutrients and organic matter these areas can serve as agricultural management zones.;

2011 ◽  
Vol 50 (No. 8) ◽  
pp. 352-357 ◽  
Author(s):  
V. Penížek ◽  
L. Borůvka

The aim of this study is to find a suitable treatment of conventional soil survey data for geostatistical exploitation. Different aims and methods of a conventional soil survey and the geostatistics can cause some problems. The spatial variability of clay content and pH for an area of 543 km<sup>2</sup> was described by variograms. First the original untreated data were used. Then the original data were treated to overcome the problems that arise from different aims of conventional soil survey and geostatistical approaches. Variograms calculated from the original data, both for clay content and pH, showed a big portion of nugget variability caused by a few extreme values. Simple exclusion of data representing some specific soil units (local extremes, non-zonal soils) did not bring almost any improvement. Exclusion of outlying values from the first three lag classes that were the most influenced due to a relatively big portion of these extreme values provided much better results. The nugget decreased from pure nugget to 50% of the sill variability for clay content and from 81 to 23% for pH.


1979 ◽  
Vol 92 (2) ◽  
pp. 383-391
Author(s):  
C. L. Bascomb ◽  
A. D. Todd

SummaryA statistical analysis is presented of published laboratory data on 4407 soil horizon samples collected by the Soil Survey of England and Wales during 1950–73, to typify soil taxa. Seventy-five percent of the profiles have fine textured parent materials in both calcareous and non-calcareous categories. Moderate to large increases in clay content down the profile, which could indicate argillio horizons, are found in 56% of the profiles but the influence of lithological discontinuities has not been eliminated. Argillic horizons are commonest on calcareous or low grade metamorphic rocks and non-calcareous clayey or silty sediments. Less than half the average frequency of clay increase between middle and bottom horizons is shown in the igneous and high grade metamorphic lithological type.pH gradient down the profile is not clearly related to altitude. The pH change (0·7) between top and bottom horizons in profiles from calcareous and igneous parent materials is twice as great as in other non-calcareous profiles. There is usually less clay in the top horizons than in others; the top horizon contains more than 35% clay about half as frequently as the lower horizons. Clay content categories have closely similar frequency in middle and bottom horizons. Gleying in horizon 1 is observed somewhat less frequently with increasing CaCO3. No consistent trend is found in the other horizons. Soil pH in 0·01 M-CaCl2 (pH8) is between 5·1 and 7·0 in 51% of all samples. pH5, values less than 4 occur in only 8% and are twice as common in top horizons (more than 5 cm thick) as in deeper ones. pH8, values greater than 7 are nearly twice as frequent (31%) in the bottom horizon as in the upper ones. Correlation of pH in water (pHw) with pH8 always exceeds 0·93 irrespective of lithological type. The difference of pHw from pH8 (δpH) calculated from the regression equation is 0·7–0·8 at pH6 values less than 4; it varies inversely with pH8, up to a value of 0·4–0·5 at pH6 greater than 7. Neutrality (pHw, 7) corresponds to pH8 6·5–6·6. There is no indication that δpH is related to altitude or gleying intensity but it varies according to lithological type by about 0·1 unit. Organic-matter content, as indicated by loss on ignition (950 °C) minus 10% of the measured clay percentage (LOIadj%) is little affected by lithological type; decrease with depth is steeper at pH8 less than 4 than at higher pH. Gleyed top horizons contain more organic matter than ungleyed; gradient down the profile is positively related to gleying intensity.The overall multiple regression of cation exchange capacity (CEC) on clay percentage and organic matter (LOIadj%) is (CEC = 1·21 + 0·40 clay% + 1·32 LOIadj), accounting for 61·4% of the total variance. When lithological types are considered separately the partial regression coefficients for clay percentages are greater in the two calcareous lithological types than in the non-calcareous. With lithological type 5 the large constant term and small coefficient of clay percentage indicate considerable contribution to CEC from particles or aggregates larger than 2 μm. Partial regression coefficients (lithological types 1–4 taken together), although similar both within horizon and within gley category are nevertheless shown to be significantly different. Within pH8 category, both partial regression coefficients increase directly with pH. Calculation of mean values of CEC on a clay basis for horizon 3, where contribution from organic matter is minimal, does not show significant differences between pH8 categories or gley categories.Although quantification of relationships has been possible, correlations are rarely high, so that predictive power is limited. Availability of soil group or subgroup categorizations using constant definitions based on objective measurements is suggested as a useful way of increasing predictive power within resulting smaller groups. The calculation of geographic (areal) distribution is probably the most useful purpose of a data bank of routine measurements, but the selection of samples to typify soil taxa used in this study would preclude such a use.


2009 ◽  
Vol 60 (9) ◽  
pp. 885 ◽  
Author(s):  
M. A. Rab ◽  
P. D. Fisher ◽  
R. D. Armstrong ◽  
M. Abuzar ◽  
N. J. Robinson ◽  
...  

Spatial variability in grain yield can arise from variation in many different soil and terrain properties. Identification of important sources of variation that bear significant relationship with grain yield can help achieve more effective site-specific management. This study had three aims: (i) a geostatistical description/modelling of the paddock-level spatial structure in variability of plant-available water capacity (PAWC) and related soil properties, (ii) to determine optimal number of management zones in the paddock, and (iii) to assess if the variability in PAWC and related soil properties is significantly associated with the variability in grain yield across the management zones. Particle size distribution, bulk density (BD), field capacity (FC), permanent wilting point (PWP), and soil water content (SWC) at sowing were measured at 4 soil depths (to 0.60 m) at 50 representative spatial sampling locations across a paddock near Birchip (Victoria). PAWC and plant-available water at sowing (PAWs) were derived from these data. Moderate to strong spatial dependence across the paddock was observed. The magnitude of the structural variation and of range varied widely across different soil properties and depths. The south-east edge and the central areas of the paddock had higher clay content, FC, PWP, PAWC, and lower PAWs. The paddock was divided into 6 potential management zones using combined header yield and normalised difference vegetation index (NDVI). The adequacy of zoning was evaluated using relative variability (RV) of header yield and soil properties. The mean RV for 3 zones differed little from that of 6 management zones for header yield and for each measured soil property, indicating division of the paddock into 3 zones to be adequate. The results from residual maximum likelihood (ReML) analysis showed that low yield zones had significantly higher clay content, FC, PWP, SWC, and PAWC and significantly lower PAWs than both medium and high yield zones. The mean FC, PWP, and PAWC in the low yield zones were, respectively, 25%, 26%, and 28% higher, and PAWs 36% lower than their corresponding values in the high yield zones. Linear regression analysis indicated that 59–96% of the observed variation in grain yield across management zones could be explained by variation in PWP. The practical implications of these results are discussed.


Soil Research ◽  
1989 ◽  
Vol 27 (2) ◽  
pp. 289 ◽  
Author(s):  
NJ Mckenzie ◽  
MP Austin

The utility of the Factual Key and Soil Taxonomy was tested by using comprehensive soil survey data from the lower Macquarie Valley, N.S.W. The aim was to assess whether the two classification schemes partitioned soil variation efficiently and to establish their usefulness for predicting variables not used during profile allocation. A numerical taxonomic method was used to generate a local classification which served as a benchmark to assess the two national systems. The effectiveness of the three classifications was determined by comparing the proportion of variation accounted for in a range of soil properties of direct relevance to irrigated and dryland agriculture. The Factual Key and Soil Taxonomy were found to be equally poor for predicting relevant soil properties. Both systems arbitrarily subdivided important local modalities. The variation accounted for by the numerical classification was 20-30% greater. The result demonstrates the practical advantages of a local classification and the reality of Butler's taxonomic hiatus.


2020 ◽  
Vol 110 ◽  
pp. 457-462
Author(s):  
Victoria Baranov ◽  
Ralph De Haas ◽  
Pauline Grosjean

We merge data on spatial variation in the presence of convicts across eighteenth and nineteenth century Australia with results from the country's 2017 poll on same-sex marriage and with household survey data. These combined data allow us to identify the lasting impact of convict colonization on social norms about marriage. We find that in areas with higher historical convict concentrations, more Australians recently voted in favor of same-sex marriage and hold liberal views about marriage more generally. Our results highlight how founder populations can have lasting effects on locally held social norms.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 114
Author(s):  
Katarzyna Pentoś ◽  
Krzysztof Pieczarka ◽  
Kamil Serwata

Soil spatial variability mapping allows the delimitation of the number of soil samples investigated to describe agricultural areas; it is crucial in precision agriculture. Electrical soil parameters are promising factors for the delimitation of management zones. One of the soil parameters that affects yield is soil compaction. The objective of this work was to indicate electrical parameters useful for the delimitation of management zones connected with soil compaction. For this purpose, the measurement of apparent soil electrical conductivity and magnetic susceptibility was conducted at two depths: 0.5 and 1 m. Soil compaction was measured for a soil layer at 0–0.5 m. Relationships between electrical soil parameters and soil compaction were modelled with the use of two types of neural networks—multilayer perceptron (MLP) and radial basis function (RBF). Better prediction quality was observed for RBF models. It can be stated that in the mathematical model, the apparent soil electrical conductivity affects soil compaction significantly more than magnetic susceptibility. However, magnetic susceptibility gives additional information about soil properties, and therefore, both electrical parameters should be used simultaneously for the delimitation of management zones.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 544
Author(s):  
Jetse J. Stoorvogel ◽  
Vera L. Mulder

Despite the increased usage of global soil property maps, a proper review of the maps rarely takes place. This study aims to explore the options for such a review with an application for the S-World global soil property database. Global soil organic carbon (SOC) and clay content maps from S-World were studied at two spatial resolutions in three steps. First, a comparative analysis with an ensemble of seven datasets derived from five other global soil databases was done. Second, a validation of S-World was done with independent soil observations from the WoSIS soil profile database. Third, a methodological evaluation of S-world took place by looking at the variation of soil properties per soil type and short distance variability. In the comparative analysis, S-World and the ensemble of other maps show similar spatial patterns. However, the ensemble locally shows large discrepancies (e.g., in boreal regions where typically SOC contents are high and the sampling density is low). Overall, the results show that S-World is not deviating strongly from the model ensemble (91% of the area falls within a 1.5% SOC range in the topsoil). The validation with the WoSIS database showed that S-World was able to capture a large part of the variation (with, e.g., a root mean square difference of 1.7% for SOC in the topsoil and a mean difference of 1.2%). Finally, the methodological evaluation revealed that estimates of the ranges of soil properties for the different soil types can be improved by using the larger WoSIS database. It is concluded that the review through the comparison, validation, and evaluation provides a good overview of the strengths and the weaknesses of S-World. The three approaches to review the database each provide specific insights regarding the quality of the database. Specific evaluation criteria for an application will determine whether S-World is a suitable soil database for use in global environmental studies.


Geoderma ◽  
2013 ◽  
Vol 207-208 ◽  
pp. 310-322 ◽  
Author(s):  
François Jonard ◽  
Mohammad Mahmoudzadeh ◽  
Christian Roisin ◽  
Lutz Weihermüller ◽  
Frédéric André ◽  
...  

2016 ◽  
Vol 95 (3) ◽  
pp. 253-268 ◽  
Author(s):  
Hanneke Verweij ◽  
Geert-Jan Vis ◽  
Elke Imberechts

AbstractThe spatial distribution of porosity and permeability of the Rupel Clay Member is of key importance to evaluate the spatial variation of its sealing capacity and groundwater flow condition. There are only a limited number of measured porosity and permeability data of the Rupel Clay Member in the onshore Netherlands and these data are restricted to shallow depths in the order of tens of metres below surface. Grain sizes measured by laser diffraction and SediGraph® in samples of the Rupel Clay Member taken from boreholes spread across the country were used to generate new porosity and permeability data for the Rupel Clay Member located at greater burial depth. Effective stress and clay content are important parameters in the applied grain-size based calculations of porosity and permeability.The calculation method was first tested on measured data of the Belgian Boom Clay. The test results showed good agreement between calculated permeability and measured hydraulic conductivity for depths exceeding 200m.The spatial variation in lithology, heterogeneity and also burial depth of the Rupel Clay Member in the Netherlands are apparent in the variation of the calculated permeability. The samples from the north of the country consist almost entirely of muds and as a consequence show little lithology-related variation in permeability. The vertical variation in permeability in the more heterogeneous Rupel Clay Member in the southern and east-southeastern part of the country can reach several orders of magnitude due to increased permeability of the coarser-grained layers.


Sign in / Sign up

Export Citation Format

Share Document