scholarly journals Artificial Intelligent Fuzzy Logic Controller Applied on 6DOF Robot Arm Using LabVIEW and FPGA

Author(s):  
Ahlam Najm A-Amir ◽  
Hanan A.R. Akkar

In this work an efficient Artificial Intelligent Robotic Fuzzy Logic Controller (AIRFC) system have been constructed to control the robot arm. A serial link Robot manipulator with 6 Degree of Freedom (DOF) from DFROBOT of code ROB0036 is used as a case study. A fuzzy logic type1 controller is implemented on LabVIEW to control each joint of the robot arm for nonlinearity measurements and a fuzzy logic type2 controller is applied which is more suitable for uncertainty. The hardware design is implemented and finally downloaded using the Field Programmable Gate Array (FPGA) kit named PCI-7833R from National Instrument. By using the LabVIEW FPGA MODEL the target board can be detected for software implementation of the controllers’ systems. The work shows that in case of type2 fuzzy logic the rise time is less than that of type1 fuzzy logic for the shoulder, wrist roll and the gripper angles and it is higher for base, elbow and wrist pitch angles. The settling time is the same in elbow and wrist pitch angles and for the type2 fuzzy controller it is less for other angles.

2011 ◽  
Vol 403-408 ◽  
pp. 5068-5075
Author(s):  
Fatma Zada ◽  
Shawket K. Guirguis ◽  
Walied M. Sead

In this study, a design methodology is introduced that blends the neural and fuzzy logic controllers in an intelligent way developing a new intelligent hybrid controller. In this design methodology, the fuzzy logic controller works in parallel with the neural controller and adjusting the output of the neural controller. The performance of our proposed controller is demonstrated on a motorized robot arm with disturbances. The simulation results shows that the new hybrid neural -fuzzy controller provides better system response in terms of transient and steady-state performance when compared to neural or fuzzy logic controller applications. The development and implementation of the proposed controller is done using the MATLAB/Simulink toolbox to illustrate the efficiency of the proposed method.


2020 ◽  
Vol 1 (01) ◽  
pp. 12-18
Author(s):  
Putri Repina Kesuma ◽  
Tresna Dewi ◽  
RD Kusumanto ◽  
Pola Risma ◽  
Yurni Oktarina

Technology is developing more and more to facilitate human life. Technology enables automation in all areas of life, and robots are among the most frequently used machines in automation. Robots can help with human work in all fields, including agriculture. A mobile robot manipulator is a combination of a robot arm and a mobile robot so that this type of robot can combine the capabilities of the two robots. This paper discusses the design of a robot manipulator to be used in agriculture to replace farmers in the harvesting of agricultural products, such as tomatoes. This paper presents a mechanical, electrical design and uses the Fuzzy Logic Controller as artificial intelligence. The feasibility of the proposed method is demonstrated by simulation in Mobotsim.


2011 ◽  
Vol 66-68 ◽  
pp. 1923-1929
Author(s):  
Fang He

In the present work PID control and the fuzzy logic based intelligent control is used to control the rectilinear plant vibrations. PID controller in real time mode is implemented on FPGA. For implementation of fuzzy logic based intelligent controller the FPGA is used as real time data acquisition (DAQ) platform and the fuzzy controller is implemented on the host PC. The sole reason for using FPGA as data acquisition platform was that the LabVIEW FPGA software module is not supporting the complex mathematics required for the fuzzy logic control and also the rectilinear plant interface with the traditional DAQ was not available. The comparative study of performance of intelligent controllers like fuzzy PD and fuzzy PI+ fuzzy PD is done with the conventional controllers on the basis of above mentioned performance indices. The result of the fuzzy PI + fuzzy PD controller is found to be the best among all.


Author(s):  
Rajmeet Singh ◽  
Tarun Kumar Bera

AbstractThis work describes design and implementation of a navigation and obstacle avoidance controller using fuzzy logic for four-wheel mobile robot. The main contribution of this paper can be summarized in the fact that single fuzzy logic controller can be used for navigation as well as obstacle avoidance (static, dynamic and both) for dynamic model of four-wheel mobile robot. The bond graph is used to develop the dynamic model of mobile robot and then it is converted into SIMULINK block by using ‘S-function’ directly from SYMBOLS Shakti bond graph software library. The four-wheel mobile robot used in this work is equipped with DC motors, three ultrasonic sensors to measure the distance from the obstacles and optical encoders to provide the current position and speed. The three input membership functions (distance from target, angle and distance from obstacles) and two output membership functions (left wheel voltage and right wheel voltage) are considered in fuzzy logic controller. One hundred and sixty-two sets of rules are considered for motion control of the mobile robot. The different case studies are considered and are simulated using MATLAB-SIMULINK software platform to evaluate the performance of the controller. Simulation results show the performances of the navigation and obstacle avoidance fuzzy controller in terms of minimum travelled path for various cases.


2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
Yi Fu ◽  
Howard Li ◽  
Mary Kaye

Autonomous road following is one of the major goals in intelligent vehicle applications. The development of an autonomous road following embedded system for intelligent vehicles is the focus of this paper. A fuzzy logic controller (FLC) is designed for vision-based autonomous road following. The stability analysis of this control system is addressed. Lyapunov's direct method is utilized to formulate a class of control laws that guarantee the convergence of the steering error. Certain requirements for the control laws are presented for designers to choose a suitable rule base for the fuzzy controller in order to make the system stable. Stability of the proposed fuzzy controller is guaranteed theoretically and also demonstrated by simulation studies and experiments. Simulations using the model of the four degree of freedom nonholonomic robotic vehicle are conducted to investigate the performance of the fuzzy controller. The proposed fuzzy controller can achieve the desired steering angle and make the robotic vehicle follow the road successfully. Experiments show that the developed intelligent vehicle is able to follow a mocked road autonomously.


Jurnal Teknik ◽  
2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Sumardi Sadi

DC motors are included in the category of motor types that are most widely used both in industrial environments, household appliances to children's toys. The development of control technology has also made many advances from conventional control to automatic control to intelligent control. Fuzzy logic is used as a control system, because this control process is relatively easy and flexible to design without involving complex mathematical models of the system to be controlled. The purpose of this research is to study and apply the fuzzy mamdani logic method to the Arduino uno microcontroller, to control the speed of a DC motor and to control the speed of the fan. The research method used is an experimental method. Global testing is divided into three, namely sensor testing, Pulse Width Modulation (PWM) testing and Mamdani fuzzy logic control testing. The fuzzy controller output is a control command given to the DC motor. In this DC motor control system using the Mamdani method and the control system is designed using two inputs in the form of Error and Delta Error. The two inputs will be processed by the fuzzy logic controller (FLC) to get the output value in the form of a PWM signal to control the DC motor. The results of this study indicate that the fuzzy logic control system with the Arduino uno microcontroller can control the rotational speed of the DC motor as desired.


2021 ◽  
Vol 297 ◽  
pp. 01033
Author(s):  
Iliass Rkik ◽  
Mohamed El khayat ◽  
Hafsa Hamidane ◽  
Abdelali Ed-Dahhak ◽  
Mohammed Guerbaoui ◽  
...  

This paper presents the modeling of an intelligent combined MPPT and Lead-Acid battery charger controller for standalone solar photovoltaic systems. It involves the control of a DC/DC buck converter through a control unit, which contains two cascaded fuzzy logic controllers (FLC), that adjusts the required duty cycle of the converter according to the state of charge and the three stage lead acid battery charging system. The first fuzzy logic controller (FLC1) consists of an MPPT controller to extract the maximum power produced by the PV array, while the second fuzzy controller (FLC2) is aimed to control the voltage across the battery to ensure the three stage charging approach. This solution of employing two distinct cascaded fuzzy controllers surmounts the drawbacks of the classical chargers in which the voltage provided to the lead acid battery is not constant owing to the effects of the MPPT control which can automatically damage the battery. Thus, the suggested control strategy has the benefit of extracting the full power against the PV array, avoiding battery damage incurred by variable MPPT voltage and increasing the battery’s lifespan.


Author(s):  
Amjed A. Al-mousa ◽  
Ali H. Nayfeh ◽  
Pushkin Kachroo

Abstract Rotary cranes (tower cranes) are common industrial structures that are used in building construction, factories, and harbors. These cranes are usually operated manually. With the size of these cranes becoming larger and the motion expected to be faster, the process of controlling them became difficult without using automatic control methods. In general, the movement of cranes has no prescribed path. Cranes have to be run under different operating conditions, which makes closed-loop control preferable. In this work a fuzzy logic controller is introduced with the idea of split-horizon; that is, fuzzy inference engines (FIE) are used for tracking the position and others are used for damping the load oscillations. The controller consists of two independent controllers: radial and rotational. Each of these controllers has two fuzzy inference engines (FTEs). Computer simulations are used to verify the performance of the controller. Three simulation cases are introduced: radial, compound, and damping. The results from the simulations show that the fuzzy controller is capable of keeping the load-oscillation angles small throughout the maneuvers while completing them in a relatively reasonable time.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abhishek Kumar Kashyap ◽  
Dayal R. Parhi

Purpose This paper aims to outline and implement a novel hybrid controller in humanoid robots to map an optimal path. The hybrid controller is designed using the Owl search algorithm (OSA) and Fuzzy logic. Design/methodology/approach The optimum steering angle (OS) is used to deal with the obstacle located in the workspace, which is the output of the hybrid OSA Fuzzy controller. It is obtained by feeding OSA's output, i.e. intermediate steering angle (IS), in fuzzy logic. It is obtained by supplying the distance of obstacles from all directions and target distance from the robot's present location. Findings The present research is based on the navigation of humanoid NAO in complicated workspaces. Therefore, various simulations are performed in a 3D simulator in different complicated workspaces. The validation of their outcomes is done using the various experiments in similar workspaces using the proposed controller. The comparison between their outcomes demonstrates an acceptable correlation. Ultimately, evaluating the proposed controller with another existing navigation approach indicates a significant improvement in performance. Originality/value A new framework is developed to guide humanoid NAO in complicated workspaces, which is hardly seen in the available literature. Inspection in simulation and experimental workspaces verifies the robustness of the designed navigational controller. Considering minimum error ranges and near collaboration, the findings from both frameworks are evaluated against each other in respect of specified navigational variables. Finally, concerning other present approaches, the designed controller is also examined, and major modifications in efficiency have been reported.


Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 946 ◽  
Author(s):  
Felice De Luca ◽  
Vito Calderaro ◽  
Vincenzo Galdi

Energy demand associated with the ever-increasing penetration of electric vehicles on worldwide roads is set to rise exponentially in the coming years. The fact that more and more vehicles will be connected to the electricity network will offer greater advantages to the network operators, as the presence of an on-board battery of discrete capacity will be able to support a whole series of ancillary services or smart energy management. To allow this, the vehicle must be equipped with a bidirectional full power charger, which will allow not only recharging but also the supply of energy to the network, playing an active role as a distributed energy resource. To manage recharge and vehicle-to-grid (V2G) operations, the charger has to be more complex and has to require a fast and effective control structure. In this work, we present a control strategy for an integrated on-board battery charger with a nine-phase electric machine. The control scheme integrates a fuzzy logic controller within a voltage-oriented control strategy. The control has been implemented and simulated in Simulink. The results show how the voltage on the DC-bus is controlled to the reference value by the fuzzy controller and how the CC/CV charging mode of the battery is possible, using different charging/discharging current levels. This allows both three-phase fast charge and V2G operations with fast control response time, without causing relevant distortion grid-side (Total Harmonic Distortion is maintained around 3%), even in the presence of imbalances of the machine, and with very low ripple stress on the battery current/voltage.


Sign in / Sign up

Export Citation Format

Share Document