MODELING OF THE PROCESS FOR MEASUREMENT OF INTERFACE POSITION BETWEEN TWO MEDIA IN A TANK BY USING RADIOFREQUENCY METHOD

Author(s):  
Alexey Alexeyevich Maslov ◽  
Alexander Mikhailovich Prokhorenkov ◽  
Alexander Sergeyevich Sovlukov ◽  
Victoria Vladimirovna Yatsenko

The article describes modeling of the process for measurement of interface position between two media, in particular two immiscible liquids with different density, one over the other, contained in a tank using radiofrequency method. In this case it is provided invariance of measurement results to electrical parameters of both media. Independent sections of transmission lines with end horizontal sections are used as sensors. To provide invariance to electrical parameters of the lower medium there are used natural resonance frequencies of the two sections of a transmission line or phase shifts of electromagnetic waves with fixed frequency excited and received at the section inputs and reflected from section ends. Functional conversion of informative parameters helps to determine interface position between two media in the tank. In the modeled measurement process in order to provide invariance to electrical parameters of two liquids there are placed vertically three sections of a coaxial or two-wire transmission line. Due to the availability of horizontal end sections at all three transmission line sections, there is no uncertainty of measurement results when measuring the interface position at its zero-, or close to zero, readings in the course of functional processing of resonance frequencies of the three transmission line sections. These sections may be done identical with equal end horizontal parts of a fixed length but with different reactive loads at the ends of horizontal parts. Between parallel outer conductors of coaxial line sections up to the ends of their horizontal parts, electromagnetic oscillations are excited as in a two-conductor line section having end reactive load that is different from the end reactive loads of coaxial line sections. This provides the difference of three dependencies of corresponding resonance frequencies on coordinate of interface position between two media. Determination of interface position in the modeled measurement process on the base of this method is characterized by higher measurement accuracy, easy realization of radiofrequency devices and is free from shortcomings of other radiofrequency methods.

2018 ◽  
Vol 64 ◽  
pp. 05004
Author(s):  
Ying Lu ◽  
Zhibin Zhao ◽  
Jian gong Zhang ◽  
Zheyuan Gan

The passive interference of transmission lines to nearby radio stations may affect the effective reception and transmission of radio station signals. Therefore, the accurate calculation of the electromagnetic scattering of transmission lines under the condition of external electromagnetic waves is the basis for determining the reasonable avoidance spacing of the two. For passive stations operating in short-wave frequencies, passive interference is mainly generated by the tower, and span is one of the most significant factors affecting passive interference. This paper uses the method of moments to carry out the passive interference calculations under normal circumstances, expounds the method of calculating the electromagnetic field of transmission line at the same time. And elaborates the method for calculating the electromagnetic field of the transmission line, obtains the space electric field intensity of the transmission line at the same working frequency and space location of the plane wave. Applying the approximate formula to calculate the formula for the span and critical distance between the observation point and the transmission line.


2018 ◽  
Vol 64 ◽  
pp. 05005
Author(s):  
Ying Lu ◽  
Zhibin Zhao ◽  
Jian gong Zhang ◽  
Zheyuan Gan

The passive interference of transmission lines to nearby radio stations may affect the effective reception and transmission of radio station signals. Therefore, the accurate calculation of the electromagnetic scattering of transmission lines under the condition of external electromagnetic waves is the basis for determining the reasonable avoidance spacing of the two. For passive stations operating in short-wave frequencies, passive interference is mainly generated by the tower. This paper uses the method of moments to perform passive interference calculations under normal circumstances, And elaborates the method for calculating the electromagnetic field of the transmission line, obtains the space electric field intensity of the transmission line at the same working frequency and space location of the plane wave. Uses the approximate formula to inductive the formula for calculating height of tower and the protective distance.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6541
Author(s):  
Jung-Doung Yu ◽  
Sang Yeob Kim ◽  
Jong-Sub Lee

This study investigates variations in the velocity and sensitivity of electromagnetic waves in transmission lines configured in defective model piles for the detection of necking defects containing soil. Experiments are performed with model piles containing defects filled with different materials, such as air, sands, and clay. Five different types of transmission lines are configured in model piles. The electromagnetic waves are generated and detected using a time domain reflectometer. The velocity of electromagnetic waves is highest when the defect is filled with air, and it decreases with an increase in the water content. The velocity is lowest when the defect is filled with clay. The sensitivity of transmission lines for detecting defects decreases with an increase in soil water contents. The transmission line with a single electrical wire and epoxy-coated rebar exhibits the highest sensitivity, followed by that with three and two parallel electrical wires. Transmission lines with a single electrical wire and uncoated rebar and those with two parallel electrical wires wrapped with a sheath exhibit poor sensitivity when the defect is filled with clay. This study demonstrates that electromagnetic waves can be effective tools for detecting necking defects with wet and conductive soils in bored piles.


2014 ◽  
Vol 543-547 ◽  
pp. 813-816
Author(s):  
Yin Han Gao ◽  
Tian Hao Wang ◽  
Jun Dong Zhang ◽  
Kai Yu Yang ◽  
Yu Zhu

This article will combine the difference scheme of first-order upwind with the multi-conductor transmission lines equation to analysis the multi-conductor transmission lines crosstalk in the time domain. First-order upwind is a finite difference algorithm in the time domain; it has a first order accuracy, in the discontinuous solution there is no non-physics-oscillation, when simulate the signal. The flux splitting method which is applied to the first-order upwind solved the problem that the characteristic line direction of the wind type make plus or minus transformation along with the coefficient, make the programming simple. In this paper, simulation results of transmission line crosstalk in this algorithm will be compared with the traditional leapfrog scheme, to verify its effectiveness.


2008 ◽  
Vol 6 ◽  
pp. 19-25 ◽  
Author(s):  
T. Zelder ◽  
B. Geck ◽  
I. Rolfes ◽  
H. Eul

Abstract. The scattering parameters of embedded devices can be measured by means of contactless vector network analysis. To achieve accurate measurement results, the contactless measurement setup has to be calibrated. However, if the substrate material or the planar transmission lines on the substrate changes, a new calibration is necessary. In this paper a method will be examined, which reduces the number of calibration cycles by using a database. Analytical results show that by using this database method, errors occur which depend on the coupling coefficients and on the load impedances of the contactless probes. However, the measurement results show deviations smaller than 7% in comparison to the conventional vector network analysis, which is sufficient for the most pratical applications.


Author(s):  
Pampa Debnath ◽  
Arpan Deyasi

In unbounded media, wave propagation is supposed to be unguided. The existence of uniform plane wave is considered to be all through the space. Electromagnetic energy related with the wave stretched over a broad area. In TV and radio broadcasting, unbounded medium propagation of the wave is required. Here transmission of information is destined for one and all who may be interested. Another way of transmitting information is by guided media. Guided media acts to direct the transmission of energy from transmitter to receiver. Transmission lines are usually used in low frequency power distribution and in high frequency communications as well as in the ethernet and internet in computer networks. Two or more parallel conductors may be used to construct a transmission line, which connects source to a load. Typical transmission lines consist of coaxial line, waveguide, microstrip line, coplanar waveguide, etc. In this chapter, problems related with transmission lines are solved with the help of EM field theory and electric circuit theory.


2019 ◽  
pp. 1-13
Author(s):  
Vasil G. Angelov

The paper deals with analysis of propagation of transverse electromagnetic waves along lossy transmission lines terminated by a circuit consisting of parallel connected RLCelements. Using the Kirchhoff’s laws we derive boundary conditions and formulate the mixed problem for hyperbolic system describing the lossy transmission line. Without the Heaviside's condition, we cannot guarantee the distortionless propagation of waves and hence we cannot apply the known methods. That is why we apply a different method and obtain conditions for existence-uniqueness of generalized solution. We change variables and formulate a mixed problem for the hyperbolic system with respect to the new variables. The nonlinear characteristics of the RLC-elements generate nonlinearity in the equations of neutral type on the boundary. We propose an operator presentation of the mixed problem for transmission line system and by means of fixed point technique we prove existence-uniqueness of a generalized solution.


2019 ◽  
pp. 1-13 ◽  
Author(s):  
Vasil G. Angelov

The paper deals with analysis of propagation of transverse electromagnetic waves along lossy transmission lines terminated by a circuit consisting of parallel connected RLCelements. Using the Kirchhoff’s laws we derive boundary conditions and formulate the mixed problem for hyperbolic system describing the lossy transmission line. Without the Heaviside's condition, we cannot guarantee the distortionless propagation of waves and hence we cannot apply the known methods. That is why we apply a different method and obtain conditions for existence-uniqueness of generalized solution. We change variables and formulate a mixed problem for the hyperbolic system with respect to the new variables. The nonlinear characteristics of the RLC-elements generate nonlinearity in the equations of neutral type on the boundary. We propose an operator presentation of the mixed problem for transmission line system and by means of fixed point technique we prove existence-uniqueness of a generalized solution.


2018 ◽  
Vol 7 (1) ◽  
pp. 41-50
Author(s):  
J. Gholinejhad ◽  
R. Shariatinasab ◽  
K. Sheshyekani

This paper presents a probabilistic evaluation, based on Monte-Carlo method, for the estimation of insulation risk of failure of overhead transmission lines (TLs). The proposed method takes into account the wide-band model of tower-footing grounding system. The wide-band model of grounding system in frequency domain is obtained by the method of moment solution to the governing electrical field integral equations. The electrical parameters of soil are considered to be either constant or frequency dependent. The time-domain representation of the grounding system is inferred through pole-zero characterization of its associated frequency response. The case of a typical 400-kV transmission line is modelled in EMTP_RV with the tower-footing grounding system integrated with the transmission line (TL) system. The results of the paper show that the failure risk of transmission lines is affected by the grounding system model. This effect is more pronounced when the soil electrical parameters are assumed to be frequency dependent.


2020 ◽  
Vol 92 (2) ◽  
pp. 20502
Author(s):  
Behrokh Beiranvand ◽  
Alexander S. Sobolev ◽  
Anton V. Kudryashov

We present a new concept of the thermoelectric structure that generates microwave and terahertz signals when illuminated by femtosecond optical pulses. The structure consists of a series array of capacitively coupled thermocouples. The array acts as a hybrid type microwave transmission line with anomalous dispersion and phase velocity higher than the velocity of light. This allows for adding up the responces from all the thermocouples in phase. The array is easily integrable with microstrip transmission lines. Dispersion curves obtained from both the lumped network scheme and numerical simulations are presented. The connection of the thermocouples is a composite right/left-handed transmission line, which can receive terahertz radiation from the transmission line ports. The radiation of the photon to the surface of the thermocouple structure causes a voltage difference with the bandwidth of terahertz. We examined a lossy composite right/left-handed transmission line to extract the circuit elements. The calculated properties of the design are extracted by employing commercial software package CST STUDIO SUITE.


Sign in / Sign up

Export Citation Format

Share Document