scholarly journals Seed Damage Test for Roller-Type Device Designed at Different Flute Helical Angles

2021 ◽  
Vol 7 (3) ◽  
pp. 495-502
Author(s):  
Emrah KUŞ
Keyword(s):  
2021 ◽  
Vol 13 (5) ◽  
pp. 2745
Author(s):  
Manoj Kumar ◽  
Ritu Dogra ◽  
Mahesh Narang ◽  
Manjit Singh ◽  
Sushant Mehan

Manual transplanting, a pre-dominant practice in almost all the paddy growing areas in India, is laborious, burdensome, and has many expenses on raising, settling, and transplanting nursery. The transplanting process’s limitations motivated the replacement of conventional paddy transplanting methods. The study was divided into two phases. The first phase included laboratory testing of three levels of metering mechanisms, namely cell type (M1) with 10 cells grooved around a circular plate having a 13 cm diameter, inclined plate (M2) containing 24 U shaped cells provided on an 18 cm diameter plate, and fluted roller (M3) with 10 flutes on a 5 cm diameter shaft. The testing matrix included a missing index, multiple index, and seed damage with forward speeds (2.5, 3.0, and 3.5 km/h), and pre-germination levels of 24 h soaked (P1), 24 h pre-germinated (P2), and 36 h pre-germinated paddy seeds (P3)). The second phase included selecting the best combination obtained from the laboratory study and developing a new efficient planter for the puddled field. The inclined plate metering mechanism operating at 2.5 km/h for 24 h pre-germinated seeds was reported most efficient from the first phase. Therefore, a self-propelled 8-row planter equipped with an inclined plate metering mechanism having a row-to-row spacing of 22.5 cm was developed, fabricated, and evaluated in the puddled field. The designed planter was assessed on two different soils: sandy loom (ST1) and clay loom (ST2) and at two different hopper fill levels as ½ filled hopper (F1) and ¾ filled hopper (F2). The number of plants per square meter and hill-to-hill spacing was measured. The on-field evaluation revealed that the number of plants per square meter was non-significantly affected by the type of soil but was significantly affected by hopper fill.


Author(s):  
Imed Eddine Achouri ◽  
Gontran Richard ◽  
Thami Zeghloul ◽  
Karim Medles ◽  
Mohamed Fodil Boukhoulda ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Kaori Shiojiri ◽  
Rika Ozawa ◽  
Ken-Ichi Yamashita ◽  
Masayoshi Uefune ◽  
Kenji Matsui ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Shoko Kimura ◽  
Ayaka Fujii ◽  
Seiichi Harata ◽  
Takuto Sakuma ◽  
Shohei Kato
Keyword(s):  

2014 ◽  
Vol 146 (3) ◽  
pp. 335-346 ◽  
Author(s):  
M.A.H. Smith ◽  
I.L. Wise ◽  
S.L. Fox ◽  
C.L. Vera ◽  
R.M. DePauw ◽  
...  

AbstractSpring wheat varieties with the Sm1 gene for resistance to wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), were compared with susceptible wheat (Triticum Linnaeus; Poaceae) with respect to sources of yield loss and reduction in market value from wheat midge feeding damage. Four resistant varietal blends (90% Sm1 wheat plus 10% susceptible refuge) and four susceptible cultivars were grown in replicated experiments at eight locations in western Canada. Frequencies and 1000-kernel weights of undamaged and midge-damaged seeds were assessed before harvest by dissecting samples of ripe spikes, and after harvest in samples of cleaned grain. Spike data were used to estimate yield losses from reduced weight of damaged seeds and loss of severely damaged seeds (⩽8 mg) at harvest. Among midge-damaged seeds in spikes, few were severely damaged in resistant varietal blends, whereas most were severely damaged in susceptible cultivars. Cleaned, harvested grain of resistant varietal blends and susceptible cultivars had similar frequencies of midge damage and were assessed similar market grades. The primary benefit of midge-resistant wheat was reduced yield loss due to seed damage by wheat midge larvae. Resistant wheat did not protect against loss of market grade, but market value could increase due to larger yields.


Nukleonika ◽  
2017 ◽  
Vol 62 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Slawomir Jednorog ◽  
Ewa Laszynska ◽  
Barbara Bienkowska ◽  
Adam Ziolkowski ◽  
Marian Paduch ◽  
...  

Abstract The power output of plasma experiments and fusion reactors is a crucial parameter. It is determined by neutron yields that are proportional and directly related to the fusion yield. The number of emitted neutrons should be known for safety reasons and for neutron budget management. The PF-1000 is the large plasma facility based on the plasma focus phenomenon. PF-1000 is operating in the Institute of Plasma Physics and Laser Microfusion in Warsaw. Neutron yield changes during subsequent pulses, which is immanent part of this type device and so it must be monitored in terms of neutron emission. The reference diagnostic intended for this purpose is the silver activation counter (SAC) used for many years. Our previous studies demonstrated the applicability of radio-yttrium for neutron yield measurements during the deuterium campaign on the PF-1000 facility. The obtained results were compared with data from silver activation counter and shown linear dependence but with some protuberances in local scale. Correlation between results for both neutron monitors was maintained. But the yttrium monitor registered the fast energy neutron that reached measurement apparatus directly from the plasma pinch. Based on the preliminary experiences, the yttrium monitor was designed to automatically register neutron-induced yttrium activity. The MCNP geometrical model of PF-1000 and yttrium monitor were both used for calculation of the activation coefficient for yttrium. The yttrium monitor has been established as the permanent diagnostic for monitoring fusion reactions in the PF-1000 device.


2021 ◽  
Vol 05 (05) ◽  
Author(s):  
Peruga JZ ◽  
Ćwiek-Rębowska E ◽  
Szymczyk E ◽  
Jankowski L ◽  
Kasprzak J

Sign in / Sign up

Export Citation Format

Share Document