Microbubbles Size Distribution at Different Palm Oil Mill Effluent (POME) Temperatures for Oil Recovery Study

2017 ◽  
Vol 14 (2) ◽  
pp. 89
Author(s):  
Nurul Hazwani Mohamad ◽  
Alawi Sulaiman ◽  
Jagannathan Krishnan ◽  
Mohd Noriznan Mokhtar ◽  
Azhari Samsu Baharuddin

Palm Oil Mill Effluent (POME) is the largest contributor of biomass from the palm oil milling industry. Conventional method of POME treatment using ponding system should be improved because of huge land resource requirement. In this study, microbubbles technology was applied to understand the recovery rate of residual oil from POME at different operating temperatures. Temperature for POME was set at 27 oC, 30 oC and 50 oC to determine the microbubble size distributions and characteristics at different POME temperature. At each temperature, the size of microbubbles was measured based on six size range; <10 μm, (11-20) μm, (21-30) μm, (31-40) μm, (41-50) μm and >50 μm. The results showed that at different temperatures, the microbubbles size distribution varies and the smallest group of microbubbles (<10μm) was generated at 50oC. According to Stoke-Einstein equation, at higher temperature, smaller size of microbubbles is generated because of the gas diffusion factor into liquid.

2020 ◽  
Vol 14 (2) ◽  
pp. 89
Author(s):  
Nurul Hazwani Mohamad ◽  
Alawi Sulaiman ◽  
Jagannathan Krishnan ◽  
Mohd Noriznan Mokhtar ◽  
Azhari Samsu Baharuddin

Palm Oil Mill Effluent (POME) is the largest contributor of biomass from the palm oil milling industry. Conventional method of POME treatment using ponding system should be improved because of huge land resource requirement. In this study, microbubbles technology was applied to understand the recovery rate of residual oil from POME at different operating temperatures. Temperature for POME was set at 27 oC, 30 oC and 50 oC to determine the microbubble size distributions and characteristics at different POME temperature. At each temperature, the size of microbubbles was measured based on six size range; <10 μm, (11-20) μm, (21-30) μm, (31-40) μm, (41-50) μm and >50 μm. The results showed that at different temperatures, the microbubbles size distribution varies and the smallest group of microbubbles (<10μm) was generated at 50oC. According to Stoke-Einstein equation, at higher temperature, smaller size of microbubbles is generated because of the gas diffusion factor into liquid.


2021 ◽  
Vol 945 (1) ◽  
pp. 012042
Author(s):  
Y M Tang ◽  
W Y Wong ◽  
K T Tan ◽  
L P Wong

Abstract Palm oil is the planet’s most exploited vegetable oil. However, its extensive commercialization has resulted in massive waste, particularly palm oil mill effluent (POME), contributing to severe environmental pollution. POME has a high concentration of oil and grease (O&G) with the mean value of 4,340 mg/L, exceeding the standard discharge limit of 50 mg/L. Hence, the recovery of oil content in POME is crucial as it could be a key material in biodiesel production. The oil droplets in POME exist in two phases: floating in the supernatant and suspended in the solids. During the solvent extraction process, the oil adsorbed by the solid particles is not entirely recovered. Thus, ultrasonication-based process intensification is introduced. Ultrasonication can break apart the solid particles and release the oil content using the principle of sound waves, thereby it will eventually increase the yield of oil recovery from POME. Although some studies were done on oil extraction from POME, the use of ultrasonication technique to enhance the extraction of oil from POME has never been done. The current research work is to investigate the feasibility of using ultrasonication technique to enhance the oil recovery from POME and compare it to a non-ultrasonicated POME. Overall, this research discovered that using ultrasonication as a pre-treatment would improve oil recovery yield from POME by 39.17% as compared to non-ultrasonicated sample under the optimum ultrasonication conditions of 30% amplitude and 30 seconds duration.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 716
Author(s):  
Cut Nanda Sari ◽  
Rukman Hertadi ◽  
Andre Fahriz Perdana Harahap ◽  
Muhammad Yusuf Arya Ramadhan ◽  
Misri Gozan

Biosurfactants are one of the microbial bioproducts that are in most demand from microbial-enhanced oil recovery (MEOR). The production of biosurfactant is still a relatively high cost. Therefore, this study aims to reduce production costs by utilizing palm oil mill effluent (POME) as the main carbon source. This work examines the optimal conditions of biosurfactant production by Halomonas meridiana BK-AB4 isolated from the Bledug Kuwu mud volcano in Central Java Indonesia and studies it for EOR applications. The biosurfactant production stage was optimized by varying POME concentration, incubation time, NaCl concentration, and pH to obtain the maximum oil displacement area (ODA) values. A response surface methodology (RSM) and a central composite design (CCD) were used to identify the influence of each variable and to trace the relationship between variables. Optimum biosurfactant production was found at a POME concentration (v/v) of 16%, incubation (h) of 112, NaCl concentration (w/v) of 4.7%, pH of 6.5, with an oil displacement area of 3.642 cm. The LC-MS and FTIR analysis revealed the functional groups of carboxylic acid or esters, which indicated that the biosurfactant produced belonged to the fatty acid class. The lowest IFT value was obtained at the second and seventh-day observations at a concentration of 500 mg/L, i.e., 0.03 mN/m and 0.06 mN/m. The critical micelle concentration (CMC) of biosurfactant was about 350 mg/L with a surface tension value of about 54.16 mN/m. The highest emulsification activity (E24 = 76%) in light crude oil (naphthenic–naphthenic) and could reduce the interfacial tension between oil and water up to 0.18 mN/m. The imbibition experiment with biosurfactant results in 23.89% additional oil recovery for 60 h of observation, with the highest increase in oil recovery occurring at the 18th hour, which is 2.72%. Therefore, this bacterium and its biosurfactant show potential, and the bacterium are suitable for use in MEOR applications.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 566
Author(s):  
Ruwaida Abdul Wahid ◽  
Wei Lun Ang ◽  
Abdul Wahab Mohammad ◽  
Daniel James Johnson ◽  
Nidal Hilal

Fertilizer-drawn forward osmosis (FDFO) is a potential alternative to recover and reuse water and nutrients from agricultural wastewater, such as palm oil mill effluent that consists of 95% water and is rich in nutrients. This study investigated the potential of commercial fertilizers as draw solution (DS) in FDFO to treat anaerobic palm oil mill effluent (An-POME). The process parameters affecting FO were studied and optimized, which were then applied to fertilizer selection based on FO performance and fouling propensity. Six commonly used fertilizers were screened and assessed in terms of pure water flux (Jw) and reverse salt flux (JS). Ammonium sulfate ((NH4)2SO4), mono-ammonium phosphate (MAP), and potassium chloride (KCl) were further evaluated with An-POME. MAP showed the best performance against An-POME, with a high average water flux, low flux decline, the highest performance ratio (PR), and highest water recovery of 5.9% for a 4-h operation. In a 24-h fouling run, the average flux decline and water recovered were 84% and 15%, respectively. Both hydraulic flushing and osmotic backwashing cleaning were able to effectively restore the water flux. The results demonstrated that FDFO using commercial fertilizers has the potential for the treatment of An-POME for water recovery. Nevertheless, further investigation is needed to address challenges such as JS and the dilution factor of DS for direct use of fertigation.


Sign in / Sign up

Export Citation Format

Share Document