scholarly journals Renewable energy from biogas generated by sewage sludge – relationship between sludge volume and power generated

2008 ◽  
Vol 5 (2) ◽  
pp. 1
Author(s):  
Suzana Ramli ◽  
Aminuddin Mohd Baki ◽  
Muhamad Azmi Ayub ◽  
Suhaimi Abdul Talib ◽  
Ramlah Mohd Tajuddin ◽  
...  

Biogas is a product of decomposition of organic matter during the process of anaerobic digestion (AD). The main components are methane and carbon dioxide. The methane content in the biogas enables it to be used as fuel which can be converted to heat and electricity. The biogas generated by the anaerobic digesters has the potential to be redirected from the flaring facilities to renewable energy (RE) facilities. The biogas may then be used to generate electricity, which in turn can operate the sewage treatment plant (STP) itself. However, feedbacks from the sewerage industry indicated that heavy investments are needed for any RE initiatives on biogas generated by sewage sludge. In order to find the cost effective way of generating energy from biogas, fundamental relationships are necessary to enable development of prototype in the future. Thus, this paper presents a study to establish the relationship between the volume of sludge and the amount of power and energy that can be generated.

2016 ◽  
Vol 15 (3) ◽  
pp. 840-848
Author(s):  
B. Geraats ◽  
M. Parnowska ◽  
L. Kox

Abstract At Linz-Unkel (Germany) sewage treatment plant the first full scale state-of-art EloDry-Pro® plant for sewage sludge has been constructed, consisting of the PYREG® reactor and the EloDry® belt dryer. The system is characterised by small footprint, flexibility, modular design and efficient energy management. The sludge dried using an EloDry® belt dryer undergoes staged combustion using the PYREG® module at around 6,500°C. This reduces the sludge to a fraction of its original volume while disinfecting it and removing micro-pollutants such as pharmaceutical residues. The residual ash, which has a high percentage of plant-available phosphorus, is then supplied to the fertiliser industry as a recycled raw material. The working principle of EloDry-Pro® installation, including heat flows of the system, is presented. The paper describes Pyreg®'s advanced emission control systems, preventing NOx formation and removing harmful substances such as mercury and sulphur. The EloDry-Pro® technology is an innovative and cost-effective approach to decentralised thermal recycling of sewage sludge. Both sewage sludge volumes and transportation costs are reduced by up to 90%, therefore making it a low carbon cost-effective alternative to the transportation of sludge and allowing local sludge processing at plants under 100 k population.


1991 ◽  
Vol 23 (10-12) ◽  
pp. 1773-1781 ◽  
Author(s):  
Daisaku Yashiki ◽  
Tadahiro Murakami

Sludge melting furnaces have been applied recently to the treatment of a great deal of sludge generated from the sewage treatment plant. In this report, an explanation is provided of the history of system introduction, outline of treatment flow, sludge properties, operation results and effective utilization of slag generated at the reflector melting furnace, which began operation in July 1988 at the Futakami Sewage Treatment Plant in Toyama Prefecture. The melting furnace almost totally satisfies the needs of its design, and the properties of the generated melted slag exhibit the features that fully enable its effective utilization.


1994 ◽  
Vol 29 (12) ◽  
pp. 117-127
Author(s):  
Jan Erik Lind ◽  
Ernst Olof Swedling

The sewage treatment plant of Uppsala was originally built in 1946 and has since then been extended and upgraded several times up to 1972 when the last major upgrading was completed. In 1987 it was decided to renew the treatment plant for at least another 20-30 years of operation and to upgrade the biological process to include nitrogen reduction. A 7 year plan covering some 18 items with a total investment cost of approximately 120 MSEK was set in action during 1987. The aim was to raise the cost efficiency by introducing modern techniques, new machinery, a better working environment and a better understanding of the processes used. The need to keep the plant in operation during reconstruction work has caused difficulties, delays and unforseen costs but a close cooperation between all parties concerned (operators, contractors, engineers and the regional environment administration) has solved most of the problems. Experiences so far include an improved effluent quality, a better cost efficiency, a healthier and more engaged operating staff. A research team has been engaged to develop and introduce a nitrogen reduction scheme in the activated sludge process. This has been a challenging and fruitful experience.


2013 ◽  
Vol 671-674 ◽  
pp. 2736-2741
Author(s):  
Yin An Ming ◽  
Tao Tao

To reuse municipal sewage sludge safely, experiment was carried out on grapefruit trees fertilized with composted sludge from Shiweitou Sewage Treatment Plant in Xiamen City of China, and a method was introduced of how to assess the environmental quality of grapefruit trees soil fertilized with sludge by Set Pair Analysis (SPA) model. The results showed that the soil in the surface layer (0-15cm) and the deeper layer (15-30cm) was less clean, and the environment of soil was not polluted. Thus it was feasible to use sludge as fruit fertilizer. The maximum service life of sludge for continuous land application was estimated by taking Cd as the limiting factor, which would provide scientific guide and technical support for safe land application of sludge.


2021 ◽  
Author(s):  
Yanyan Fang

Abstract Microplastics (MPs) have been found in all environment matrices and have become an issue of concern worldwide. In this study, Baiyangdian Lake in Northern China was investigated for the presence of MPs (0.45 µm–5 mm) in sediment and at different water depths. MPs were found at 1,000–20,000 pieces/m3 (average 9,595) in water and at 400–2,200 pieces/kg (average 1,023) in sediment. Since the implementation of pollution abatement measures, visible MPs have been nearly eliminated; the MPs found in this study were mainly in the micrometer range, with no more than 3–5 pieces greater than 1 mm per sample. The main forms of MPs were fibrous and fragmented, and the main components were polyamide, polyethylene, and polypropylene. MPs found in water near a garbage transfer station showed the following abundance of MPs: surface water < middle water < bottom water. The sediment contained a higher amount of MP fragments, indicating that the historical transfer and disposal of garbage was a main source of plastic deposition in this area. There was a high content of fibrous MPs in surface water, while the abundance of fragmented MPs increased with the depth of water. The main sources of MPs in the study area were residential activities, local plastic factories, and the treated effluent from a sewage treatment plant.


Author(s):  
R. Edgecock ◽  
V. V. Bratishko ◽  
I. V. Zinchenko ◽  
S. H. Karpus ◽  
D. O. Milko ◽  
...  

Annotation Purpose. Summarize the regulatory and technological requirements for the production of organic (organo-mineral) fertilizers on the base of sewage sludge. Methods. Analysis and generalization of the requirements of regulatory documents on the management of organic waste and their use as raw materials for the production of organic fertilizers and soil improvers. Results. The current legislative, departmental and regulatory documentary base in Ukraine concerning the treatment of sediment resulting from biological sewage treatment at municipal wastewater treatment plants for its further use in agriculture as fertilizers is analysed. Indicators are identified and analysed to determine the possibility, feasibility, efficiency and scope of organic fertilizers produced using sewage sludge. The analysis of changes in the content of organic matter and total nitrogen in the sewage sludge during its storage at the sewage treatment plant sites is presented. The technological feasibility of using sludge of different shelf life in composting production has been determined. Conclusions 1. The regulatory framework of Ukraine contains a sufficiently complete list of indicators that should be met by organic raw materials (sewage sludge) for further use as organic fertilizers. Some of these indicators – bio security and heavy metals content – can be improved in the composting process of fertilizers. 2. Fresh sediment, as well as sediment accumulated in the last late autumn and winter periods, is of main value for use as a raw material in the production of organic fertilizers. 3. The use in the production of compost sludge stored on sludge sites for a period of half a year or more requires special control of the process of decontamination. In this case, it is advisable to use additional means of wastewater decontamination. Keywords: heavy metals, manure, humus, decontamination, composting, organic fertilizers, sewage sludge.


2002 ◽  
Vol 46 (10) ◽  
pp. 173-179 ◽  
Author(s):  
S. Tanaka ◽  
K. Kamiyama

Effects of a thermochemical pretreatment on the anaerobic digestion of waste activated sludge (WAS) was investigated by semicontinuously-fed digesters operated at 37¡C. WAS from a return sludge line of a municipal sewage treatment plant was pretreated by autoclaving at 130°C for 5 minutes after adding 0.3g NaOH/g VSS. Solids of WAS were thermochemically solubilized to one half and then 60% or more were in totality solubilized in anaerobic digesters fed with pretreated WAS at 2-8 days of hydraulic retention times (HRT), while only 16-36% were solubilized in digesters fed with raw WAS. The adverse effect of the set temperature (130°C) on the biodegradability of protein was not found. As a result, removal rates of COD in digestion was increased from 38% to 57% at 8 days HRT by the pretreatment. A specific methane production rate in the pretreated process was three times as high as the normal process. The thermochemical pretreatment was found to be very effective to enhance biodegradability as well as solubilization of WAS in anaerobic digestion.


2019 ◽  
pp. 1183-1187 ◽  
Author(s):  
Alyson Silva de Araujo ◽  
Luiz Eduardo Bassay Blum ◽  
Cícero Célio de Figueiredo

The use of sewage sludge to produce biochar is one of the best alternatives for the final destination of this material, allowing for reuse of nutrients and reducing the dependence on mineral fertilizers. Sewage sludge biochar (SSB) stands out as an enhancer of the physical, chemical and biological properties of the soil. The use of beneficial microorganisms such as Trichoderma spp. in combination with biochar may have a synergistic effect on the development of different plants and needs to be better studied. The SSB was produced from sewage sludge biomass (SS) obtained from the sewage treatment plant (STP) of the Federal District Environmental Sanitation Company (CAESB), Brasilia, DF, Brazil. The SSB was produced in an electric tubular furnace at 500 °C and showed the following characteristics: carbon (19%), nitrogen (2.3%), hydrogen (1.7%), specific surface area (52.5 m2 g-1), pore volume (0.053 ml g-1). An experiment was carried out in a greenhouse to evaluate the synergistic effect of SSB application (0.5% w/w) in combination with T. harzianum (TH) on soybean development. The treatments adopted were: (1) control – autoclaved soil, (2) TH, (3) SSB and (4) SSB + TH. The SSB was applied 15 days before soybean planting and the TH was applied to the soil two times, once at eight days before planting and the other at the time of planting. The SSB resulted in a 200% increase in the number of pods when compared to the exclusive application of T. harzianum. Application of SSB with T. harzianum increased germination by 20%, as well as a 70% increase in fresh and dry soybean mass in relation to the control. The agronomic indices evaluated in this study demonstrated that the use of SSB in conjunction with T. harzianum presents a synergistic effect, allowing for better development of the soybean plants.


2016 ◽  
Vol 22 (3) ◽  
pp. 157-166 ◽  
Author(s):  
Elżbieta Włodarczyk ◽  
Marta Próba ◽  
Lidia Wolny

Abstract Aim of this study was to evaluate the ecotoxicity of municipal sewage sludge conditioned with polyelectrolytes, taken from selected sewage treatment plant. Using the bioindication analysis overall toxicity was assessed, which allows to know the total toxicity of all the harmful substances contained in sewage sludge, in many cases acting synergistically. To prepare a sample of sludge for the basic test, all analyses were performed with a ratio of liquid to solid of 10:1 (water extract). Daphnia pulex biological screening test was used. A dilution series of an water extract of sludge were prepared to include within its scope the lowest concentration that causes 100% effect and the highest producing less than 10% of the effect within a specified range of the assay. The results of the test were read after 24 and 48 hours. Based on the research and analysis of test results it proved that the sewage sludge conditioned with polyelectrolytes exhibit the characteristics of eco-toxic.


Sign in / Sign up

Export Citation Format

Share Document