scholarly journals In Vitro and in Vivo Antidiabetic Activity of Vinca Rosea Roots Extracts in Streptozotocin Induced Diabetic Albino Wistar Rats

2020 ◽  
Vol 26 ◽  
Author(s):  
Shaik Ibrahim Khalivulla ◽  
Arifullah Mohammed ◽  
Kokkanti Mallikarjuna

Background: Diabetes is a chronic disease affecting a large population worldwide and stands as one of the major global health challenges to be tackled. According to World Health Organization, about 400 million are having diabetes worldwide and it is the seventh leading cause of deaths in 2016. Plant based natural products had been in use from ancient time as ethnomedicine for the treatment of several diseases including diabetes. As a result of that, there are several reports on plant based natural products displaying antidiabetic activity. In the current review, such antidiabetic potential compounds reported from all plant sources along with their chemical structures are collected, presented and discussed. This kind of reports are essential to pool the available information to one source followed by statistical analysis and screening to check the efficacy of all known compounds in a comparative sense. This kind of analysis can give rise to few numbers of potential compounds from hundreds, whom can further be screened through in vitro and in vivo studies, and human trails leading to the drug development. Methods: Phytochemicals along with their potential antidiabetic property were classified according to their basic chemical skeleton. The chemical structures of all the compounds with antidiabetic activities were elucidated in the present review. In addition to this, the distribution and their other remarkable pharmacological activities of each species is also included. Results: The scrutiny of literature led to identification of 44 plants with antidiabetic compounds (70) and other pharmacological activities. For the sake of information, the distribution of each species in the world is given. Many plant derivatives may exert antidiabetic properties by improving or mimicking the insulin production or action. Different classes of compounds including sulfur compounds (1-4), alkaloids (5-11), phenolic compounds (12-17), tannins (18-23), phenylpropanoids (24-27), xanthanoids (28-31), amino acid (32), stilbenoid (33), benzofuran (34), coumarin (35), flavonoids (36-49) and terpenoids (50-70) were found to be active potential compounds for antidiabetic activity. Of the 70 listed compounds, majorly 17 compounds are from triterpenoids, 13 flavonoids and 7 are from alkaloids. Among all the 44 plant species, maximum number (7) of compounds are reported from Lagerstroemia speciosa followed by Momordica charantia (6) and S. oblonga with 5 compounds. Conclusion: This is the first paper to summarize the established chemical structures of phytochemicals that have been successfully screened for antidiabetic potential and their mechanisms of inhibition. The reported compounds could be considered as potential lead molecules for the treatment of type-2 diabetes. Further, molecular and clinical trials are required to select and establish the therapeutic drug candidates.


2011 ◽  
Vol 46 (6) ◽  
pp. 2243-2251 ◽  
Author(s):  
Juan José Ramírez-Espinosa ◽  
Maria Yolanda Rios ◽  
Sugey López-Martínez ◽  
Fabian López-Vallejo ◽  
José L. Medina-Franco ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Cheng-Chih Tsai ◽  
Sew-Fen Leu ◽  
Quan-Rong Huang ◽  
Lan-Chun Chou ◽  
Chun-Chih Huang

Three lactic acid bacterial strains,Lactobacillus plantarum, HK006, and HK109, andPediococcus pentosaceusPP31 exhibit probiotic potential as antiallergy agents, both in vitro and in vivo. However, the safety of these new strains requires evaluation when isolated from infant faeces or pickled cabbage. Multiple strains (HK006, HK109, and PP31) were subject to a bacterial reverse mutation assay and a short-term oral toxicity study. The powder product exhibited mutagenic potential inSalmonellaTyphimurium strains TA98 and TA1535 (with or without metabolic activation). In the short-term oral toxicity study, rats received a normal dosage of 390 mg/kg/d (approximately9×109 CFU/kg/d) or a high dosage of 1950 mg/kg/d (approximately4.5×1010 CFU/kg/d) for 28 d. No adverse effects were observed regarding the general condition, behaviour, growth, feed and water consumption, haematology, clinical chemistry indices, organ weights, or histopathologic analysis of the rats. These studies have demonstrated that the consumption of multiple bacterial strains is not associated with any signs of mutagenicity ofS.Typhimurium or toxicity in Wistar rats, even after consuming large quantities of bacteria.


Author(s):  
Fatma Zahra Sakhri ◽  
Sakina Zerizer ◽  
Chawki Bensouici

Dietary natural antioxidant consumption can protect the human body from several diseases induced by free radicals. The aim of this study was to evaluate the antioxidant, antidiabetic and immunomodulatory properties of Cydonia oblonga fruit. For this; hydroethanolic extract of Cydonia oblonga fruit (HECO) was examined for antioxidant activity using DPPH free radical sc avenging, ABTS cation radical decolorization, Cupric reducing antioxidant capacity (CUPRAC), and Metal Chelating on ferrous ions activities. The inhibitory activity of the extract against α-glucosidase enzyme was also investigated. HECO was tested in vivo for the immunomodulatory activity on non-specific immunity by the carbon clearance test. The content of the nonenzymatic antioxidant reduced glutathione (GSH) in liver tissue of used mice was estimated. in vitro studies revealed that the HECO has an inhibitory concentration (IC50) value of 249.26 ± 3.75μg/mL, 117.34 ± 1.41 μg/ml for DPPH and ABTS scavenging activity respectively. As well as the ability to reduce cupric (167.17 ± 1.15μg/mL) and iron (Fe) (417.98 ± 48.82μg/mL). The extract showed antidiabetic activity as evidenced by its capacity to inhibit the α-glucosidase enzyme (IC50: 326.48 ± 18.56 µg/mL) near the acarbose (IC50: 275.98 ± 1.57 µg/mL) used as a positive control. In addition, our results showed that HECO at the concentration of 50 and 100 mg/kg significantly increased the clearance rate of carbon from the bloodstream concomitant with increased liberation of GSH from liver cells. This study demonstrates that HECO is effective in scavenging free radicals and can serve as potent antioxidants that provide potential treatment and prevention for diabetes with benefits on the innate defense system. Keywords: Antidiabetic, Antioxidant, Cydonia oblonga, Hydroethanolic extract, Phagocytic activity


Author(s):  
KAMNI RAJPUT ◽  
RAMESH CHANDRA DUBEY

Objective: In vitro antioxidant activity, in vivo antidiabetic property and intestinal attachment by two potential probiotic bacterial strains, namely, Enterococcus faecium and Enterococcus hirae were studied using albino rats. Methods: Antioxidant the activity was assessed using 2,2-Diphenyl-1-picrylhydrazyl radicals scavenging assay. Alloxan was administered intraperitoneally to induce diabetic conditions in experimental rats. Animals were treated with oral administration of Enterococcus spp., such as E. faecium, and E. hirae isolated from goat and sheep milk. The control animal group received normal saline for the same days. Glibenclamide drug was used as a positive control against probiotic bacterial cells. Results: However, administration of probiotic bacterial strains E. faecium and E. hirae, in albino rats significantly (p<0.05) at varying doses lowered blood glucose levels in diabetic rats as compared to the diabetic control group. Both the species of Enterococcus increased the bodyweight of experimental rats. However, E. faecium was the best antidiabetic strain having the antioxidant activities also in comparison to E. hirae. The attachment of probiotic bacterial cells E. faecium on the rat’s intestine wall against pathogens was examined. Furthermore, E. faecium showed its aggregation with pathogens by attachment of the intestines of albino rats. This showed that both the bacterial strains exhibited in vivo antidiabetic effect. Conclusion: The results of this study showed that probiotic bacteria possess antioxidant, antidiabetic activities, and attachment of intestine.


2020 ◽  
Vol 7 (2) ◽  
pp. 50-55
Author(s):  
Anitha T A ◽  
Pakutharivu T ◽  
Nirubama K ◽  
Akshaya V

The traditional herbal medicines are mainly obtained from plants are used in the management of Diabetes mellitus. The main objective of this work was to assess the presence of phytochemical compounds and to evaluate the in vitro antidiabetic activity of isopropanolic extracts of Pimenta racemosa leaves by studying their α-amylase inhibitory activity and glucose transport across yeast cells. Screening of phytochemicals showed positive results for alkaloids, steroids, cardiac glycosides, terpenoids, reducing sugars, anthraquinones, and results of in vitro α-amylase inhibitory studies demonstrated there was a dose-dependent increase in percentage inhibitory activity by the isopropanolic leaf extracts of Pimenta racemosa. At a concentration of 1 mg/ml, the extract showed a percentage inhibition 33.6 and for 5 mg/ml it was 91.2. The glucose uptake study was also studied through yeast cells by analyzing theamount of glucose remaining in the medium after a specific time intervals. It serves as an indicator for the capability of isopropanolic leaf extracts of Pimenta racemosa to transport the glucose into yeast cells. As a result, we found that the isopropanolic leaf extract of Pimenta racemosa have inhibitory activity against αamylase and also, which is efficient in glucose uptake. This therapeutic potentiality of Pimenta racemosa could be exploited in the treatment of Type 2 Diabetes mellitus. Further studies are also required to elucidate whether the plant have antidiabetic potential by in vivo for corroborating the traditional claim of the plant.


2020 ◽  
Vol 177 ◽  
pp. 113948
Author(s):  
Sureshbabu Mangali ◽  
Audesh Bhat ◽  
Kirtikumar Jadhav ◽  
Jaspreet Kalra ◽  
Dharmarajan Sriram ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jyoti Kaushik ◽  
Simran Tandon ◽  
Rishi Bhardwaj ◽  
Tanzeer Kaur ◽  
Surinder Kumar Singla ◽  
...  

Abstract Modern treatment interventions for kidney stones are wrought with side-effects, hence the need for alternative therapies such as plant-based medicines. We have previously documented through in vitro studies that statistically optimized aqueous extract of Tribulus terrestris (Zygophyllaceae family) possesses antiurolithic and antioxidant potential. This provides strong scientific foundation to conduct in vivo efficacy and preclinical safety studies to corroborate and lend further proof to its ability to prevent and cure kidney stones. The preventive and curative urolithiatic efficacy in experimentally induced nephrolithiatic Wistar rats, along with preclinical toxicity was evaluated following oral administration of statistically optimized aqueous extract of T. terrestris. Treatment showed augmented renal function, restoration of normal renal architecture and increase in body weight. Microscopic analysis of urine revealed excretion of small sized urinary crystals, demonstrating that treatment potentially modulated the morphology of renal stones. Tissue enzymatic estimation affirmed the antioxidant efficacy of treatment with reduced free radical generation. Significant upregulation of p38MAPK at both the gene and protein level was noted in hyperoxaluric group and interestingly treatment reversed it. Acute oral toxicity study established the Median Lethal Dose (LD50) to be greater than 2000 mg/kg body weight (b.wt.) No observed adverse effect level (NOAEL) by repeated oral toxicity for 28 days at 750 mg/kg b.wt. was noted. This study lends scientific evidence to the safe, preventive and curative potential of statistically optimized aqueous extract of T. terrestris at a dose of 750 mg/kg b.wt. and suggests that the extract shows promise as a therapeutic antiurolithic agent.


Sign in / Sign up

Export Citation Format

Share Document