scholarly journals Review Paper on Decision Tree Data Mining Algorithms to Improve Accuracy in Identifying Classified Instances using Large Dataset

Author(s):  
Gurpreet Singh et al., Gurpreet Singh et al., ◽  
Author(s):  
Moloud Abdar ◽  
Sharareh R. Niakan Kalhori ◽  
Tole Sutikno ◽  
Imam Much Ibnu Subroto ◽  
Goli Arji

Heart diseases are among the nation’s leading couse of mortality and moribidity. Data mining teqniques can predict the likelihood of patients getting a heart disease. The purpose of this study is comparison of different data mining algorithm on prediction of heart diseases. This work applied and compared data mining techniques to predict the risk of heart diseases. After feature analysis, models by five algorithms including decision tree (C5.0), neural network, support vector machine (SVM), logistic regression and k-nearest neighborhood (KNN) were developed and validated. C5.0 Decision tree has been able to build a model with greatest accuracy 93.02%, KNN, SVM, Neural network have been 88.37%, 86.05% and 80.23% respectively. Produced results of decision tree can be simply interpretable and applicable; their rules can be understood easily by different clinical practitioner.


Author(s):  
Geert Wets ◽  
Koen Vanhoof ◽  
Theo Arentze ◽  
Harry Timmermans

The utility-maximizing framework—in particular, the logit model—is the dominantly used framework in transportation demand modeling. Computational process modeling has been introduced as an alternative approach to deal with the complexity of activity-based models of travel demand. Current rule-based systems, however, lack a methodology to derive rules from data. The relevance and performance of data-mining algorithms that potentially can provide the required methodology are explored. In particular, the C4 algorithm is applied to derive a decision tree for transport mode choice in the context of activity scheduling from a large activity diary data set. The algorithm is compared with both an alternative method of inducing decision trees (CHAID) and a logit model on the basis of goodness-of-fit on the same data set. The ratio of correctly predicted cases of a holdout sample is almost identical for the three methods. This suggests that for data sets of comparable complexity, the accuracy of predictions does not provide grounds for either rejecting or choosing the C4 method. However, the method may have advantages related to robustness. Future research is required to determine the ability of decision tree-based models in predicting behavioral change.


2019 ◽  
Vol 14 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Viswam Subeesh ◽  
Eswaran Maheswari ◽  
Hemendra Singh ◽  
Thomas Elsa Beulah ◽  
Ann Mary Swaroop

Background: The signal is defined as “reported information on a possible causal relationship between an adverse event and a drug, of which the relationship is unknown or incompletely documented previously”. Objective: To detect novel adverse events of iloperidone by disproportionality analysis in FDA database of Adverse Event Reporting System (FAERS) using Data Mining Algorithms (DMAs). Methodology: The US FAERS database consists of 1028 iloperidone associated Drug Event Combinations (DECs) which were reported from 2010 Q1 to 2016 Q3. We consider DECs for disproportionality analysis only if a minimum of ten reports are present in database for the given adverse event and which were not detected earlier (in clinical trials). Two data mining algorithms, namely, Reporting Odds Ratio (ROR) and Information Component (IC) were applied retrospectively in the aforementioned time period. A value of ROR-1.96SE>1 and IC- 2SD>0 were considered as the threshold for positive signal. Results: The mean age of the patients of iloperidone associated events was found to be 44years [95% CI: 36-51], nevertheless age was not mentioned in twenty-one reports. The data mining algorithms exhibited positive signal for akathisia (ROR-1.96SE=43.15, IC-2SD=2.99), dyskinesia (21.24, 3.06), peripheral oedema (6.67,1.08), priapism (425.7,9.09) and sexual dysfunction (26.6-1.5) upon analysis as those were well above the pre-set threshold. Conclusion: Iloperidone associated five potential signals were generated by data mining in the FDA AERS database. The result requires an integration of further clinical surveillance for the quantification and validation of possible risks for the adverse events reported of iloperidone.


Author(s):  
Ari Fadli ◽  
Azis Wisnu Widhi Nugraha ◽  
Muhammad Syaiful Aliim ◽  
Acep Taryana ◽  
Yogiek Indra Kurniawan ◽  
...  

BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 4891-4904
Author(s):  
Selahattin Bardak ◽  
Timucin Bardak ◽  
Hüseyin Peker ◽  
Eser Sözen ◽  
Yildiz Çabuk

Wood materials have been used in many products such as furniture, stairs, windows, and doors for centuries. There are differences in methods used to adapt wood to ambient conditions. Impregnation is a widely used method of wood preservation. In terms of efficiency, it is critical to optimize the parameters for impregnation. Data mining techniques reduce most of the cost and operational challenges with accurate prediction in the wood industry. In this study, three data-mining algorithms were applied to predict bending strength in impregnated wood materials (Pinus sylvestris L. and Millettia laurentii). Models were created from real experimental data to examine the relationship between bending strength, diffusion time, vacuum duration, and wood type, based on decision trees (DT), random forest (RF), and Gaussian process (GP) algorithms. The highest bending strength was achieved with wenge (Millettia laurentii) wood in 10 bar vacuum and the diffusion condition during 25 min. The results showed that all algorithms are suitable for predicting bending strength. The goodness of fit for the testing phase was determined as 0.994, 0.986, and 0.989 in the DT, RF, and GP algorithms, respectively. Moreover, the importance of attributes was determined in the algorithms.


Sign in / Sign up

Export Citation Format

Share Document