scholarly journals The Carbon Effect in Biodiesel Synthesis

Al-Kimia ◽  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Mohammad Arfi Setiawan ◽  
Brilian Gema Morentera

Biodiesel is synthesized from the trans-esterification reaction of vegetable oil and alcohol using a catalyst such as acids, bases or enzymes. The acid catalyst that is often used is sulfuric acid; H2SO4, and HCl while most of base catalysts are NaOH and KOH. The aim of this study is to determine the effect of carbon derived from sugar heating in the synthesis of biodiesel with a sulfuric acid catalyst; H2SO4. Trans-esterification reaction of Jatropha oil and methanol with sulfuric acid catalyst was done with oil and methanol at 1:9 ratio. The results showed that (1) the physical properties of the biodiesel was synthesized with carbon-H2SO4 has a difference with physical properties the biodiesel was synthesized by sulfuric acid (2) carbon-H2SO4 was used in the trans-esterification reaction of Jatropha oil and methanol to produce methyl ester character is the density of 0.889 g / mL, 24.59 cSt viscosity and refractive index of 1.464, (3) methyl ester produced from the reaction of trans-esterification of Jatropha oil and methanol with sulfuric acid catalyst has a character that is a density of 0.882 g / mL, 11.70 cSt viscosity and refractive index of 1.458.

2019 ◽  
Vol 8 (2) ◽  
pp. 156-166
Author(s):  
Ratna Dewi Kusumaningtyas ◽  
Muhammad Hafizt Akbar ◽  
Dwi Widjanarko

The rapid growth of the population and economy has boosted up the necessity of fuel and  energy source. Until now, the world’s dependency on fossil fuel as the primary energy supply is still high. On the other hand, it has been known that the fossil-based oil and gas reserves are shrunk. Hence, it is urgent to develop alternative energy sources, which are renewable and environmentally friendly, to anticipate the energy insufficiency. Biodiesel is among the prospective renewable energy due to its advantages. Biodiesel (fatty acid methyl esters) is a type of biofuel which is derived from vegetable oil or animal fat. There are various vegetable oils that can be used as raw material for biodiesel production. However, non-edible oils are usually preferred to be selected as a biodiesel feedstock to evade the conflict between food and energy needs. Kapok Randu (Ceiba pentandra) seed oil is a type of non-edible oil which is cheap and can be employed as biodiesel feedstock. However, this oil has high free fatty acid (FFA) content (8.89%). Thus, it cannot directly undergo transesterification reaction to produce biodiesel since the FFA will react with alkaline catalyst to produce soap. The FFA content in Kapok Randu seed oil needs to be decreased until it is lower than 2%. Hence, prior to transesterification reaction, esterification of Kapok Randu seed oil with methanol in the presence of acid catalyst should be conducted to decrease the FFA content. In this work, esterification reaction was performed in the presence of sulfuric acid catalyst. The reactions were conducted at the molar ratio of oil to methanol of 1:12 at the temperature of 40, 50, and 60 ℃ for 120 minutes. The optimum reaction conversion was 95.14%, achieved at the reaction temperature of 60 ℃. Kinetics study using homogeneous models was also performed. It was revealed that the reaction was appropriate with the irreversible second order reaction model. The reaction rate constant (k), activation energy (Ea), and  frequency factor (A) were 4.95 L / mole.min, 30,799.21 J/ mole and 338.744 / min, respectively.


2015 ◽  
Vol 787 ◽  
pp. 809-814 ◽  
Author(s):  
Prateek Rastogi ◽  
Ranjitha Jambulingam ◽  
S. Vijayalakshmi ◽  
Michael S. Donatus

The ain of the present paper describes about the bio-oil extraction using soxhlet and supercritical CO2 process. The percentage yield 82.34 % was more in the case of supercritical CO2 extraction. The extracted bio-oil was converted into biodiesel using enzymatic trans-esterification reaction. A novel catalyst Gum arabic coated magnetic Fe3O4 nanoparticles are used in the enzymatic trans-esterification reaction. The extracted bio-oil and produced bio-diesel samples were characterised using GC-MS spectral data. Similarly, physical properties such as density, flash point, kinematic viscosity, cloud point and pour point were found out for Jatropha oil and Jatropha methyl ester. The values obtained from the Jatropha methyl ester is closely matched with the values of conventional diesel and can be used in the existing diesel engine without any modification.


2020 ◽  
Vol 851 ◽  
pp. 164-171 ◽  
Author(s):  
Aman Santoso ◽  
Abdurrohman ◽  
Anugrah Ricky Wijaya ◽  
Dedek Sukarianingsih ◽  
Sumari ◽  
...  

Vegetable oil is one of rice bran components. As triglycerides, vegetable oil can be converted to fatty acid and alkyl esters for further treatments. Synthesis of alkyl ester oil can be carried out by esterification or transesterification reaction, depending on the quality of the oil and the catalyst. The purposes of this study are 1) Rice bran oil isolation, 2) Oil esterification 3) Characterization and identification of the methyl ester that compose rice bran oil. The stages in this research are 1) Extraction of rice bran oil, 2) Synthesis of methyl ester from rice bran through esterification reaction, 3) Methyl ester characterization of rice bran oil and its potential test as biodiesel included determination of density, viscosity, refractive index, and acid number test, 4) The identification of synthesized methyl esters composition using GC-MS. The results showed that rice bran oil has a yield of 18.09%. Synthesis of methyl esters from rice bran oil through the esterification reaction with a catalyst acid yields 72.37%. The characters of the synthesized methyl ester are on the range of biodiesel quality standards, namely, the density is 0.850 g/mL, viscosity is 4.73 cSt, a refractive index is 1.45871, and an acid number is 0.76 g KOH/g methyl ester, therefore it is claimed that the synthesized methyl esters have the potential as biodiesel. The GC-MS result showed the presence of compounds methyl tetradecanoate (0.38%), methyl hexadecanoate (40.67%), methyl 9-octadecenoate (53.68%), methyl octadecanoate (5.02%), and methyl eicosanoate (0.14%).


Sign in / Sign up

Export Citation Format

Share Document