scholarly journals Chromatin accessibility profiling provides insights into larval cuticle color and adult longevity in butterflies

2021 ◽  
Vol 42 (0) ◽  
pp. 1-6
Author(s):  
Wen-Ting Wan ◽  
◽  
◽  
Zhi-Wei Dong ◽  
Yan-Dong Ren ◽  
...  
2014 ◽  
Vol 49 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Julianne Milléo ◽  
Francisco Sales Fernandes ◽  
Wesley Augusto Conde Godoy

The objective of this work was to compare biological aspects and life table parameters of the coccinellids Harmonia axyridis, Cycloneda sanguineaand Hippodamia convergens. Insects were fed eggs of Anagasta kuehniella, and reared at 24.5±1ºC, 70±10% relative humidity, with a 12 hour photophase. Hippodamia convergenstook about 1.6 day to complete development, longer than H. axyridis, and 2.4 day longer than C. sanguinea.At immature stages, H. axyridisexhibited the highest survival percentage (49.2%), in comparison to the other coccinellids. For mean adult longevity, H. convergenswas deficient, in comparison with the other species. Mean period of pre oviposition was the longest in C. sanguinea; the longest oviposition time occurred for H. axyridis; and the post oviposition period was similar between the coccinellids. Considering the reproductive parameters, H. axyridisshowed the best performance in all aspects. For life table, the values of H. convergenswere higher than, although close, to those of H. axyridis. Nevertheless, the high net reproductive rate of H. axyridis showed this species potential to increase population size. The biological characteristics of the exotic H. axyridis favors its invasion and establishment in Brazil, corroborating results noticed in other countries.


Oncogene ◽  
2021 ◽  
Author(s):  
Kaisa-Mari Launonen ◽  
Ville Paakinaho ◽  
Gianluca Sigismondo ◽  
Marjo Malinen ◽  
Reijo Sironen ◽  
...  

AbstractTreatment of prostate cancer confronts resistance to androgen receptor (AR)-targeted therapies. AR-associated coregulators and chromatin proteins hold a great potential for novel therapy targets. Here, we employed a powerful chromatin-directed proteomics approach termed ChIP-SICAP to uncover the composition of chromatin protein network, the chromatome, around endogenous AR in castration resistant prostate cancer (CRPC) cells. In addition to several expected AR coregulators, the chromatome contained many nuclear proteins not previously associated with the AR. In the context of androgen signaling in CRPC cells, we further investigated the role of a known AR-associated protein, a chromatin remodeler SMARCA4 and that of SIM2, a transcription factor without a previous association with AR. To understand their role in chromatin accessibility and AR target gene expression, we integrated data from ChIP-seq, RNA-seq, ATAC-seq and functional experiments. Despite the wide co-occurrence of SMARCA4 and AR on chromatin, depletion of SMARCA4 influenced chromatin accessibility and expression of a restricted set of AR target genes, especially those involved in cell morphogenetic changes in epithelial-mesenchymal transition. The depletion also inhibited the CRPC cell growth, validating SMARCA4’s functional role in CRPC cells. Although silencing of SIM2 reduced chromatin accessibility similarly, it affected the expression of a much larger group of androgen-regulated genes, including those involved in cellular responses to external stimuli and steroid hormone stimulus. The silencing also reduced proliferation of CRPC cells and tumor size in chick embryo chorioallantoic membrane assay, further emphasizing the importance of SIM2 in CRPC cells and pointing to the functional relevance of this potential prostate cancer biomarker in CRPC cells. Overall, the chromatome of AR identified in this work is an important resource for the field focusing on this important drug target.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Karolina Stępniak ◽  
Magdalena A. Machnicka ◽  
Jakub Mieczkowski ◽  
Anna Macioszek ◽  
Bartosz Wojtaś ◽  
...  

AbstractChromatin structure and accessibility, and combinatorial binding of transcription factors to regulatory elements in genomic DNA control transcription. Genetic variations in genes encoding histones, epigenetics-related enzymes or modifiers affect chromatin structure/dynamics and result in alterations in gene expression contributing to cancer development or progression. Gliomas are brain tumors frequently associated with epigenetics-related gene deregulation. We perform whole-genome mapping of chromatin accessibility, histone modifications, DNA methylation patterns and transcriptome analysis simultaneously in multiple tumor samples to unravel epigenetic dysfunctions driving gliomagenesis. Based on the results of the integrative analysis of the acquired profiles, we create an atlas of active enhancers and promoters in benign and malignant gliomas. We explore these elements and intersect with Hi-C data to uncover molecular mechanisms instructing gene expression in gliomas.


Cell Reports ◽  
2021 ◽  
Vol 35 (6) ◽  
pp. 109101
Author(s):  
Nicholas T. Crump ◽  
Andreas V. Hadjinicolaou ◽  
Meng Xia ◽  
John Walsby-Tickle ◽  
Uzi Gileadi ◽  
...  

Author(s):  
Noa Liscovitch-Brauer ◽  
Antonino Montalbano ◽  
Jiale Deng ◽  
Alejandro Méndez-Mancilla ◽  
Hans-Hermann Wessels ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sarah E. Pierce ◽  
Jeffrey M. Granja ◽  
William J. Greenleaf

AbstractChromatin accessibility profiling can identify putative regulatory regions genome wide; however, pooled single-cell methods for assessing the effects of regulatory perturbations on accessibility are limited. Here, we report a modified droplet-based single-cell ATAC-seq protocol for perturbing and evaluating dynamic single-cell epigenetic states. This method (Spear-ATAC) enables simultaneous read-out of chromatin accessibility profiles and integrated sgRNA spacer sequences from thousands of individual cells at once. Spear-ATAC profiling of 104,592 cells representing 414 sgRNA knock-down populations reveals the temporal dynamics of epigenetic responses to regulatory perturbations in cancer cells and the associations between transcription factor binding profiles.


Sign in / Sign up

Export Citation Format

Share Document