scholarly journals Mapping chromatin accessibility and active regulatory elements reveals pathological mechanisms in human gliomas

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Karolina Stępniak ◽  
Magdalena A. Machnicka ◽  
Jakub Mieczkowski ◽  
Anna Macioszek ◽  
Bartosz Wojtaś ◽  
...  

AbstractChromatin structure and accessibility, and combinatorial binding of transcription factors to regulatory elements in genomic DNA control transcription. Genetic variations in genes encoding histones, epigenetics-related enzymes or modifiers affect chromatin structure/dynamics and result in alterations in gene expression contributing to cancer development or progression. Gliomas are brain tumors frequently associated with epigenetics-related gene deregulation. We perform whole-genome mapping of chromatin accessibility, histone modifications, DNA methylation patterns and transcriptome analysis simultaneously in multiple tumor samples to unravel epigenetic dysfunctions driving gliomagenesis. Based on the results of the integrative analysis of the acquired profiles, we create an atlas of active enhancers and promoters in benign and malignant gliomas. We explore these elements and intersect with Hi-C data to uncover molecular mechanisms instructing gene expression in gliomas.

2019 ◽  
Author(s):  
Karolina Stępniak ◽  
Magdalena A. Machnicka ◽  
Jakub Mieczkowski ◽  
Anna Macioszek ◽  
Bartosz Wojtaś ◽  
...  

SummaryChromatin structure and accessibility, and combinatorial binding of transcription factors to regulatory elements in genomic DNA control transcription. Genetic variations in genes encoding histones, epigenetics-related enzymes or modifiers affect chromatin structure/dynamics and result in alterations in gene expression contributing to cancer development or progression. Gliomas are brain tumors frequently associated with epigenetics-related gene deregulation. We performed whole-genome mapping of chromatin accessibility, histone modifications, DNA methylation patterns and transcriptome analysis simultaneously in multiple tumor samples to unravel novel epigenetic dysfunctions driving gliomagenesis. Based on the results of the integrative analysis of the acquired profiles, we created an atlas of active enhancers and promoters in benign and malignant gliomas. We explored these elements and intersected with Hi-C data to uncover molecular mechanisms instructing gene expression in gliomas.SignificanceEpigenetics-driven deregulation of gene expression accompanies cancer development, but its comprehensive characterization in cancer patients is fragmentary. We performed whole-genome profiling of gene expression, open chromatin, histone modifications and DNA-methylation profiles in the same samples from benign and malignant gliomas. Our study provides a first comprehensive atlas of active regulatory elements in gliomas, which allowed identification of the functional enhancers and promoters in patient samples. This comprehensive approach revealed epigenetic patterns influencing gene expression in benign gliomas and a new pathogenic mechanism involving FOXM1-driven network in glioblastomas. This atlas provides a common set of elements for cross-comparisons of existing and new datasets, prompting novel discoveries and better understanding of gliomagenesis.HighlightsWe provide an atlas of cis-regulatory elements active in human gliomasEnhancer-promoter contacts operating in gliomas are revealedDiverse enhancer activation is pronounced in malignant gliomasChromatin loop activates FOXM1-ANXA2R pathological network in glioblastomas.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 436-436 ◽  
Author(s):  
Christopher J. Ott ◽  
Alexander J. Federation ◽  
Siddha Kasar ◽  
Josephine L. Klitgaard ◽  
Stacey M. Fernandes ◽  
...  

Abstract Genome sequencing efforts of chronic lymphocytic leukemia have revealed mutations that disrupt protein-coding elements of the genome (Puente et al, 2011; Wang et al, 2011; Landau et al, 2013). Recently, comprehensive whole-genome sequencing efforts have begun to reveal the genetic aberrations that occur outside of protein-coding exons, many that may perturb gene regulatory sites (Puente et al, 2015). These include enhancer elements that make physical contact with gene promoters to regulate gene expression in a cell-type specific manner. While mutations certainly promote CLL leukemogenesis, epigenomic alterations may also play an important role in facilitating disease progression and maintenance by inducing the gene expression aberrations that have long been observed in CLL. Epigenomic alterations include chromatin structure changes that facilitate altered transcription and chromatin factor recruitment to regulatory elements. While comprehensive genome-wide DNA methylation studies have been performed on human cancers and normal cell counterparts including CLL, other comprehensive studies of cancer epigenomes have been lacking. We have completed an analysis of chromatin structures in a cohort of primary chronic lymphocytic leukemia (CLL) samples with comparisons to normal CD19+ B lymphocytes (n = 18 CLL samples, n = 5 normal B lymphocyte samples). We used chromatin accessibility assays (ATAC-seq) and genome-wide enhancer mapping (H3K27ac ChIP-seq) to comprehensively define the transcriptionally active chromatin landscape of CLL. We have discovered greater than 15,000 novel regulatory elements when compared to previously annotated regulatory elements. Moreover, sites within the loci of several hundred genes were found to have large regions of gained chromatin accessibility and H3K27 acetylation, revealing the appearance of aberrant enhancer activity. These gained enhancer elements correspond with increased gene expression and are found at gene loci such as LEF1, PLCG1, CTLA4, and ITGB1. We have also systematically identified the super-enhancers of CLL - large complex regulatory regions that possess unique tissue-specific regulatory capabilities. Many of these super-enhancers are found in normal B lymphocytes, yet the super-enhancer at the ITGB1 and LEF1 loci are CLL-specific and may be considered to facilitate leukemia-specific expression. We have found CLL-specific enhancers are also significantly associated with annotated CLL risk variants, and have identified enhancer-associated SNPs found within CLL-risk loci predicted to disrupt transcription factor binding sites. These include SNPs at the IRF8 and LEF1 locithat lead to the creation and destruction of SMAD4 and RXRA binding sites, respectively. Additionally, we have analyzed whole-genome sequencing data from a subset of our sample cohort. Mutational hotspots in the CXCR4 and BACH2 promoters occur within open, acetylated regions. Moreover, we discover recurrent mutations in enhancers of the ETS1 and ST6GAL1 locus that have not been previously annotated. Using a transcription factor network modeling approach, we used these global chromatin structure characteristics to determine networks that are highly active in CLL. We find that transcription factors such as NFATc1, E2F5, and NR3C2 are among the most interconnected transcription factors of the CLL genome, and their connectivity is significantly higher in CLL cells compared to normal B cells. In contrast, network profiling of CLL cells predicts loss of MXI1 connectivity, a negative regulator of the MYC oncogene. By treating cells with specific pharmacological inhibitors of NFAT family members including cyclosporin and FK506, we are able to reduce NFAT-mediated network connectivity, resulting in a selective loss of NFAT-bound enhancers. This leads to CLL cell death in vitro of both cell lines and primary CLL patient samples. Our results reveal the unique chromatin structure landscape of CLL for the first time, and identify the CLL-specific enhancer elements that confer the transcriptional dysregulation that has long been observed in this disease. Use of these chromatin structure analyses and enhancer landscapes has allowed us to construct the intrinsic transcription factor network of CLL, and determine a particular dependency on NFAT signaling for cell survival. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jonathan D. Licht ◽  
Richard L. Bennett

Abstract Background Epigenetic mechanisms regulate chromatin accessibility patterns that govern interaction of transcription machinery with genes and their cis-regulatory elements. Mutations that affect epigenetic mechanisms are common in cancer. Because epigenetic modifications are reversible many anticancer strategies targeting these mechanisms are currently under development and in clinical trials. Main body Here we review evidence suggesting that epigenetic therapeutics can deactivate immunosuppressive gene expression or reprogram tumor cells to activate antigen presentation mechanisms. In addition, the dysregulation of epigenetic mechanisms commonly observed in cancer may alter the immunogenicity of tumor cells and effectiveness of immunotherapies. Conclusions Therapeutics targeting epigenetic mechanisms may be helpful to counter immune evasion and improve the effectiveness of immunotherapies.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
José L Ruiz ◽  
Lisa C Ranford-Cartwright ◽  
Elena Gómez-Díaz

Abstract Anopheles gambiae mosquitoes are primary human malaria vectors, but we know very little about their mechanisms of transcriptional regulation. We profiled chromatin accessibility by the assay for transposase-accessible chromatin by sequencing (ATAC-seq) in laboratory-reared A. gambiae mosquitoes experimentally infected with the human malaria parasite Plasmodium falciparum. By integrating ATAC-seq, RNA-seq and ChIP-seq data, we showed a positive correlation between accessibility at promoters and introns, gene expression and active histone marks. By comparing expression and chromatin structure patterns in different tissues, we were able to infer cis-regulatory elements controlling tissue-specific gene expression and to predict the in vivo binding sites of relevant transcription factors. The ATAC-seq assay also allowed the precise mapping of active regulatory regions, including novel transcription start sites and enhancers that were annotated to mosquito immune-related genes. Not only is this study important for advancing our understanding of mechanisms of transcriptional regulation in the mosquito vector of human malaria, but the information we produced also has great potential for developing new mosquito-control and anti-malaria strategies.


2020 ◽  
Author(s):  
Connor Rogerson ◽  
Samuel Ogden ◽  
Edward Britton ◽  
Yeng Ang ◽  
Andrew D. Sharrocks ◽  
...  

AbstractOesophageal adenocarcinoma (OAC) is one of the most common causes of cancer deaths and yet compared to other common cancers, we know relatively little about the underlying molecular mechanisms. Barrett’s oesophagus (BO) is the only known precancerous precursor to OAC, but our understanding about the specific events leading to OAC development is limited. Here, we have integrated gene expression and chromatin accessibility profiles of human biopsies of BO and OAC and identified a strong cell cycle gene expression signature in OAC compared to BO. Through analysing associated chromatin accessibility changes, we have implicated the transcription factor KLF5 in the transition from BO to OAC. Importantly, we show that KLF5 expression is unchanged during this transition, but instead, KLF5 is redistributed across chromatin in OAC cells to directly regulate cell cycle genes specifically in OAC. Our findings have potential prognostic significance as the survival of patients with high expression of KLF5 target genes is significantly lower. We have provided new insights into the gene expression networks in OAC and the mechanisms behind progression to OAC, chiefly the repurposing of KLF5 for novel regulatory activity in OAC.


Blood ◽  
1998 ◽  
Vol 92 (12) ◽  
pp. 4529-4538 ◽  
Author(s):  
Steve N. Georas ◽  
John E. Cumberland ◽  
Thomas F. Burke ◽  
Rongbing Chen ◽  
Ulrike Schindler ◽  
...  

Abstract The differentiation of naive T-helper (Th) cells into cytokine-secreting effector Th cells requires exposure to multiple signals, including exogenous cytokines. Interleukin-4 (IL-4) plays a major role in this process by promoting the differentiation of IL-4–secreting Th2 cells. In Th2 cells, IL-4 gene expression is tightly controlled at the level of transcription by the coordinated binding of multiple transcription factors to regulatory elements in the proximal promoter region. Nuclear factor of activated T cell (NFAT) family members play a critical role in regulating IL-4 transcription and interact with up to five sequences (termed P0 through P4) in the IL-4 promoter. The molecular mechanisms by which IL-4 induces expression of the IL-4 gene are not known, although the IL-4–activated transcription factor signal transducer and activator of transcription 6 (Stat6) is required for this effect. We report here that Stat6 interacts with three binding sites in the human IL-4 promoter by electrophoretic mobility shift assays. These sites overlap the P1, P2, and P4 NFAT elements. To investigate the role of Stat6 in regulating IL-4 transcription, we used Stat6-deficient Jurkat T cells with different intact IL-4 promoter constructs in cotransfection assays. We show that, whereas a multimerized response element from the germline IgE promoter was highly induced by IL-4 in Stat6-expressing Jurkat cells, the intact human IL-4 promoter was repressed under similar conditions. We conclude that the function of Stat6 is highly dependent on promoter context and that this factor promotes IL-4 gene expression in an indirect manner.


2020 ◽  
Vol 8 (11) ◽  
pp. 1807
Author(s):  
Sabine Leroy ◽  
Sergine Even ◽  
Pierre Micheau ◽  
Anne de La Foye ◽  
Valérie Laroute ◽  
...  

Staphylococcus xylosus is found in the microbiota of traditional cheeses, particularly in the rind of soft smeared cheeses. Despite its frequency, the molecular mechanisms allowing the growth and adaptation of S. xylosus in dairy products are still poorly understood. A transcriptomic approach was used to determine how the gene expression profile is modified during the fermentation step in a solid dairy matrix. S. xylosus developed an aerobic metabolism perfectly suited to the cheese rind. It overexpressed genes involved in the aerobic catabolism of two carbon sources in the dairy matrix, lactose and citrate. Interestingly, S. xylosus must cope with nutritional shortage such as amino acids, peptides, and nucleotides, consequently, an extensive up-regulation of genes involved in their biosynthesis was observed. As expected, the gene sigB was overexpressed in relation with general stress and entry into the stationary phase and several genes under its regulation, such as those involved in transport of anions, cations and in pigmentation were up-regulated. Up-regulation of genes encoding antioxidant enzymes and glycine betaine transport and synthesis systems showed that S. xylosus has to cope with oxidative and osmotic stresses. S. xylosus expressed an original system potentially involved in iron acquisition from lactoferrin.


2019 ◽  
Vol 18 ◽  
pp. 117693511985986 ◽  
Author(s):  
Salam A Assi ◽  
Constanze Bonifer ◽  
Peter N Cockerill

Acute myeloid leukemia (AML) is a highly heterogeneous cancer associated with different patterns of gene expression determined by the nature of their DNA mutations. These mutations mostly act to deregulate gene expression by various mechanisms at the level of the nucleus. By performing genome-wide epigenetic profiling of cis-regulatory elements, we found that AML encompasses different mutation-specific subclasses associated with the rewiring of the gene regulatory networks that drive differentiation into different directions away from normal myeloid development. By integrating epigenetic profiles with gene expression and chromatin conformation data, we defined pathways within gene regulation networks that were differentially rewired within each mutation-specific subclass of AML. This analysis revealed 2 major classes of AML: one class defined by mutations in signaling molecules that activate AP-1 via the mitogen-activated protein (MAP) kinase pathway and a second class defined by mutations within genes encoding transcription factors such as RUNX1/CBFβ and C/EBPα. By identifying specific DNA motifs protected from DNase I digestion at cis-regulatory elements, we were able to infer candidate transcription factors bound to these motifs. These integrated analyses allowed the identification of AML subtype-specific core regulatory networks that are required for AML development and maintenance, which could now be targeted in personalized therapies.


2017 ◽  
Vol 114 (25) ◽  
pp. E4914-E4923 ◽  
Author(s):  
Zhana Duren ◽  
Xi Chen ◽  
Rui Jiang ◽  
Yong Wang ◽  
Wing Hung Wong

The rapid increase of genome-wide datasets on gene expression, chromatin states, and transcription factor (TF) binding locations offers an exciting opportunity to interpret the information encoded in genomes and epigenomes. This task can be challenging as it requires joint modeling of context-specific activation of cis-regulatory elements (REs) and the effects on transcription of associated regulatory factors. To meet this challenge, we propose a statistical approach based on paired expression and chromatin accessibility (PECA) data across diverse cellular contexts. In our approach, we model (i) the localization to REs of chromatin regulators (CRs) based on their interaction with sequence-specific TFs, (ii) the activation of REs due to CRs that are localized to them, and (iii) the effect of TFs bound to activated REs on the transcription of target genes (TGs). The transcriptional regulatory network inferred by PECA provides a detailed view of how trans- and cis-regulatory elements work together to affect gene expression in a context-specific manner. We illustrate the feasibility of this approach by analyzing paired expression and accessibility data from the mouse Encyclopedia of DNA Elements (ENCODE) and explore various applications of the resulting model.


Genetics ◽  
2019 ◽  
Vol 213 (4) ◽  
pp. 1545-1563 ◽  
Author(s):  
Ramona Lütkenhaus ◽  
Stefanie Traeger ◽  
Jan Breuer ◽  
Laia Carreté ◽  
Alan Kuo ◽  
...  

Many filamentous ascomycetes develop three-dimensional fruiting bodies for production and dispersal of sexual spores. Fruiting bodies are among the most complex structures differentiated by ascomycetes; however, the molecular mechanisms underlying this process are insufficiently understood. Previous comparative transcriptomics analyses of fruiting body development in different ascomycetes suggested that there might be a core set of genes that are transcriptionally regulated in a similar manner across species. Conserved patterns of gene expression can be indicative of functional relevance, and therefore such a set of genes might constitute promising candidates for functional analyses. In this study, we have sequenced the genome of the Pezizomycete Ascodesmis nigricans, and performed comparative transcriptomics of developing fruiting bodies of this fungus, the Pezizomycete Pyronema confluens, and the Sordariomycete Sordaria macrospora. With only 27 Mb, the A. nigricans genome is the smallest Pezizomycete genome sequenced to date. Comparative transcriptomics indicated that gene expression patterns in developing fruiting bodies of the three species are more similar to each other than to nonsexual hyphae of the same species. An analysis of 83 genes that are upregulated only during fruiting body development in all three species revealed 23 genes encoding proteins with predicted roles in vesicle transport, the endomembrane system, or transport across membranes, and 13 genes encoding proteins with predicted roles in chromatin organization or the regulation of gene expression. Among four genes chosen for functional analysis by deletion in S. macrospora, three were shown to be involved in fruiting body formation, including two predicted chromatin modifier genes.


Sign in / Sign up

Export Citation Format

Share Document