scholarly journals Template assisted nano-structured nickel for efficient methanol oxidation

2021 ◽  
Vol 4 (1) ◽  
pp. 58
Author(s):  
S Mohanapriya ◽  
V Raj

Nanoporous nickel has been prepared by electrodeposition using non-ionic surfactant based liquid crystalline template under optimized processing conditions. Physicochemical properties of nanoporous nickel are systematically characterized through XRD, SEM and AFM analyses. Comparison of electrocatalytic activity of nanoporous nickel with smooth nickel was interrogated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) analyses. Distinctly enhanced electrocatalytic activity with improved surface poisoning resistance related to nanoporous nickel electrode towards methanol oxidation stems from unique nanoporous morphology. This nanoporous morphology with high surface to volume ratio is highly beneficial to promote active catalytic centers to offer readily accessible Pt catalytic sites for MOR, through facilitating mass and electron transports.

Author(s):  
S Mohanapriya ◽  
V Raj

Nanoporous nickel has been prepared by electrodeposition using non-ionic surfactant based liquid crystalline template under optimized processing conditions. Physicochemical properties of nanoporous nickel are systematically characterized through XRD, SEM and AFM analyses. Comparison of electrocatalytic activity of nanoporous nickel with smooth nickel was interrogated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) analyses. Distinctly enhanced electrocatalytic activity with improved surface poisoning resistance related to nanoporous nickel electrode towards methanol oxidation stems from unique nanoporous morphology. This nanoporous morphology with high surface to volume ratio is highly beneficial to promote active catalytic centers to offer readily accessible Pt catalytic sites for MOR, through facilitating mass and electron transports.


2019 ◽  
Vol 1 (3) ◽  
pp. 29
Author(s):  
S. Mohanapriya Subramanian ◽  
V Raj

Nanoporous Nickel has been prepared by electrodeposition using non-ionic surfactant based liquid crystalline template under optimized processing conditions. Physicochemical properties of nanoporous nickel is systematically character-ized through XRD, SEM and AFM analyses. Comparison of electrocatalytic activity of nanoporous nickel with smooth nickel was interrogated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) analyses. Distinctly enhanced electrocatalytic activity with improved surface poisoning resistance related to nanoporous nickel electrode towards methanol oxidation stems from unique nanoporous morphology. This nanoporous morphology with high surface to volume ratio is highly beneficial to promote active catalytic centers to offer readily accessible Pt catalytic sites for MOR, through facilitating mass and electron transports.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
S. S. Mahapatra ◽  
S. Shekhar ◽  
B. K. Thakur ◽  
H. Priyadarshi

Electropolymerization of aniline at the graphite electrodes was achieved by potentiodynamic method. Electrodeposition of Pd (C-PANI-Pd) and Ni (C-PANI-Ni) and codeposition of Pd-Ni (C-PANI-Pd-Ni) microparticles into the polyaniline (PANI) film coated graphite (C-PANI) were carried out under galvanostatic control. The morphology and composition of the composite electrodes were obtained using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) techniques. The electrochemical behavior and electrocatalytic activity of the electrode were characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometric (CA) methods in acidic medium. The C-PANI-Pd-Ni electrode showed an improved catalytic performance towards methanol oxidation in terms of lower onset potential, higher anodic oxidation current, greater stability, lower activation energy, and lower charge transfer resistance. The enhanced electrocatalytic activity might be due to the greater permeability of C-PANI films for methanol molecules, better dispersion of Pd-Ni microparticles into the polymer matrixes, and the synergistic effects between the dispersed metal particles and their matrixes.


2016 ◽  
Vol 1819 ◽  
Author(s):  
A. Olarte-Paredes ◽  
R. Salgado-Delgado ◽  
A. M. Salgado-Delgado ◽  
E. Rubio-Rosas ◽  
E. García-Hernández ◽  
...  

ABSTRACTIn recent decades conducting polymers have attracted attention due to their promising and versatile applications in different fields. There is a considerable interest in the application of nanotubes multilayer carbon (MWCNT) because of their unique structure, high electrical conductivity, high chemical stability, and high surface-to-volume ratio. These properties make MWCNT extremely attractive for fabricating sensors. Composites based on a matrix of a biopolymer such as the chitosan (CS) with a lot of conductive polymers or (MWCNT), have received increasing attention due to their attractive structural, mechanical and electrical properties that could have applications in different fields such as tissue engineering, biomedicine, and manufacture of sensors and biosensors. Have been reported conducting polymer composites with an extensive range of interesting mechanical and electrical properties, which is reported in this paper to obtain films by ultrasonic bath mixing of Chitosan 3% w/v using polypyrrole (PPy) and multilayer carbon nanotubes. Surface characterization was performed using scanning electron microscopy (SEM). The electrical properties were analyzed using electrochemical impedance spectroscopy (EIS) in a frequency range 0.01 - 10E+5 Hz to 10 mV AC. The results show that the films of CS/PPy/MWCNT have a homogeneous distribution where the chitosan envelops the loads, while for EIS retention load was observed within the matrix observing these materials in accordance with the equivalent circuit of Warburg showing diffusional process.


2021 ◽  
Vol 22 (12) ◽  
pp. 6357
Author(s):  
Kinga Halicka ◽  
Joanna Cabaj

Sensors and biosensors have found applications in many areas, e.g., in medicine and clinical diagnostics, or in environmental monitoring. To expand this field, nanotechnology has been employed in the construction of sensing platforms. Because of their properties, such as high surface area to volume ratio, nanofibers (NFs) have been studied and used to develop sensors with higher loading capacity, better sensitivity, and faster response time. They also allow to miniaturize designed platforms. One of the most commonly used techniques of the fabrication of NFs is electrospinning. Electrospun NFs can be used in different types of sensors and biosensors. This review presents recent studies concerning electrospun nanofiber-based electrochemical and optical sensing platforms for the detection of various medically and environmentally relevant compounds, including glucose, drugs, microorganisms, and toxic metal ions.


Author(s):  
Cynthia Nagy ◽  
Robert Huszank ◽  
Attila Gaspar

AbstractThis paper aims at studying open channel geometries in a layer-bed-type immobilized enzyme reactor with computer-aided simulations. The main properties of these reactors are their simple channel pattern, simple immobilization procedure, regenerability, and disposability; all these features make these devices one of the simplest yet efficient enzymatic microreactors. The high surface-to-volume ratio of the reactor was achieved using narrow (25–75 μm wide) channels. The simulation demonstrated that curves support the mixing of solutions in the channel even in strong laminar flow conditions; thus, it is worth including several curves in the channel system. In the three different designs of microreactor proposed, the lengths of the channels were identical, but in two reactors, the liquid flow was split to 8 or 32 parallel streams at the inlet of the reactor. Despite their overall higher volumetric flow rate, the split-flow structures are advantageous due to the increased contact time. Saliva samples were used to test the efficiencies of the digestions in the microreactors. Graphical abstract


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1109
Author(s):  
Varnakavi. Naresh ◽  
Nohyun Lee

A biosensor is an integrated receptor-transducer device, which can convert a biological response into an electrical signal. The design and development of biosensors have taken a center stage for researchers or scientists in the recent decade owing to the wide range of biosensor applications, such as health care and disease diagnosis, environmental monitoring, water and food quality monitoring, and drug delivery. The main challenges involved in the biosensor progress are (i) the efficient capturing of biorecognition signals and the transformation of these signals into electrochemical, electrical, optical, gravimetric, or acoustic signals (transduction process), (ii) enhancing transducer performance i.e., increasing sensitivity, shorter response time, reproducibility, and low detection limits even to detect individual molecules, and (iii) miniaturization of the biosensing devices using micro-and nano-fabrication technologies. Those challenges can be met through the integration of sensing technology with nanomaterials, which range from zero- to three-dimensional, possessing a high surface-to-volume ratio, good conductivities, shock-bearing abilities, and color tunability. Nanomaterials (NMs) employed in the fabrication and nanobiosensors include nanoparticles (NPs) (high stability and high carrier capacity), nanowires (NWs) and nanorods (NRs) (capable of high detection sensitivity), carbon nanotubes (CNTs) (large surface area, high electrical and thermal conductivity), and quantum dots (QDs) (color tunability). Furthermore, these nanomaterials can themselves act as transduction elements. This review summarizes the evolution of biosensors, the types of biosensors based on their receptors, transducers, and modern approaches employed in biosensors using nanomaterials such as NPs (e.g., noble metal NPs and metal oxide NPs), NWs, NRs, CNTs, QDs, and dendrimers and their recent advancement in biosensing technology with the expansion of nanotechnology.


2020 ◽  
Vol 6 (3) ◽  
pp. 155-158
Author(s):  
Katharina Wulf ◽  
Volkmar Senz ◽  
Thomas Eickner ◽  
Sabine Illner

AbstractIn recent years, nanofiber based materials have emerged as especially interesting for several biomedical applications, regarding their high surface to volume ratio. Due to the superficial nano- and microstructuring and the different wettability compared to nonstructured surfaces, the water absorption is an important parameter with respect to the degradation stability, thermomechanic properties and drug release properties, depending on the type of polymer [1]. In this investigation, the water absorption of different non- and plasma modified biostable nanofiber nonwovens based on polyurethane, polyester and polyamide were analysed and compared. Also, the water absorption by specified water wetting, the contact angle and morphology changes were examined. The results show that the water uptake is highly dependent on the surface modification and the polymer composition itself and can therefore be partially changed.


Sign in / Sign up

Export Citation Format

Share Document