scholarly journals Training Algorithms for Supervised Machine Learning: Comparative Study

2013 ◽  
Vol 4 (3) ◽  
pp. 354-360 ◽  
Author(s):  
Dr. Rafiqul Zaman Khan ◽  
Haider Allamy

Supervised machine learning is an important task for learning artificial neural networks; therefore a demand for selected supervised learning algorithms such as back propagation algorithm, decision tree learning algorithm and perceptron algorithm has been arise in order to perform the learning stage of the artificial neural networks. In this paper; a comparative study has been presented for the aforementioned algorithms to evaluate their performance within a range of specific parameters such as speed of learning, overfitting avoidance, and their accuracy. Besides these parameters we have included their benefits and limitations to unveil their hidden features and provide more details regarding their performance. We have found the decision tree algorithm is the best as compared with other algorithms that can solve the complex problems with a remarkable speed.

2020 ◽  
Vol 10 (17) ◽  
pp. 5734
Author(s):  
Chee Soon Lim ◽  
Edy Tonnizam Mohamad ◽  
Mohammad Reza Motahari ◽  
Danial Jahed Armaghani ◽  
Rosli Saad

To design geotechnical structures efficiently, it is important to examine soil’s physical properties. Therefore, classifying soil with respect to geophysical parameters is an advantageous and popular approach. Novel, quick, cost, and time effective machine learning techniques can facilitate this classification. This study employs three kinds of machine learning models, including the Decision Tree, Artificial Neural Networks, and Bayesian Networks. The Decision tree models included the chi-square automatic interaction detection (CHAID), classification and regression trees (CART), quick, unbiased, and efficient statistical tree (QUEST), and C5; the Artificial Neural Networks models included Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF); and BN models included the Tree Augmented Naïve (TAN) and Markov Blanket, which were employed to predict the soil classifications using geophysics investigations and laboratory tests. The performance of each model was assessed through the accuracy, stability and gains. The results showed that while the BAYESIANMARKOV model achieved the highest overall accuracy (100%) in training phase, this model achieved the lowest accuracy (34.21%) in testing phases. Thus, this model had the worst stability. The QUEST had the second highest overall training accuracy (99.12%) and had the highest overall testing accuracy (94.74%). Thus, this model was somewhat stable and had an acceptable overall training and testing accuracy to predict the soil characteristics. The future studies can use the findings of this paper as a benchmark to classify the soil characteristics and select the best machine learning technique to perform this classification.


2013 ◽  
Vol 40 (10) ◽  
pp. 3900-3905 ◽  
Author(s):  
Diego Peteiro-Barral ◽  
Bertha Guijarro-Berdiñas ◽  
Beatriz Pérez-Sánchez ◽  
Oscar Fontenla-Romero

2021 ◽  
Vol 19 (1) ◽  
pp. 134-145
Author(s):  
Abdulwahab Ali Almazroi ◽  

<abstract><p>Cardiovascular diseases are regarded as the most common reason for worldwide deaths. As per World Health Organization, nearly $ 17.9 $ million people die of heart-related diseases each year. The high shares of cardiovascular-related diseases in total worldwide deaths motivated researchers to focus on ways to reduce the numbers. In this regard, several works focused on the development of machine learning techniques/algorithms for early detection, diagnosis, and subsequent treatment of cardiovascular-related diseases. These works focused on a variety of issues such as finding important features to effectively predict the occurrence of heart-related diseases to calculate the survival probability. This research contributes to the body of literature by selecting a standard well defined, and well-curated dataset as well as a set of standard benchmark algorithms to independently verify their performance based on a set of different performance evaluation metrics. From our experimental evaluation, it was observed that decision tree is the best performing algorithm in comparison to logistic regression, support vector machines, and artificial neural networks. Decision trees achieved $ 14 $% better accuracy than the average performance of the remaining techniques. In contrast to other studies, this research observed that artificial neural networks are not as competitive as the decision tree or support vector machine.</p></abstract>


2020 ◽  
Vol 8 (6) ◽  
Author(s):  
Jeremy B. Goetz ◽  
Yi Zhang ◽  
Michael Lawler

Detecting the subtle yet phase defining features in Scanning Tunneling Microscopy and Spectroscopy data remains an important challenge in quantum materials. We meet the challenge of detecting nematic order from the local density of states data with supervised machine learning and artificial neural networks for the difficult scenario without sharp features such as visible lattice Bragg peaks or Friedel oscillation signatures in the Fourier transform spectrum. We train the artificial neural networks to classify simulated data of symmetric and nematic two-dimensional metals in the presence of disorder. The supervised machine learning succeeds only with at least one hidden layer in the ANN architecture, demonstrating it is a higher level of complexity than a nematic order detected from Bragg peaks, which requires just two neurons. We apply the finalized ANN to experimental STM data on CaFe_22As_22, and it predicts nematic symmetry breaking with dominating confidence, in agreement with previous analysis. Our results suggest ANNs could be a useful tool for the detection of nematic order in STM data and a variety of other forms of symmetry breaking.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1654
Author(s):  
Poojitha Vurtur Badarinath ◽  
Maria Chierichetti ◽  
Fatemeh Davoudi Kakhki

Current maintenance intervals of mechanical systems are scheduled a priori based on the life of the system, resulting in expensive maintenance scheduling, and often undermining the safety of passengers. Going forward, the actual usage of a vehicle will be used to predict stresses in its structure, and therefore, to define a specific maintenance scheduling. Machine learning (ML) algorithms can be used to map a reduced set of data coming from real-time measurements of a structure into a detailed/high-fidelity finite element analysis (FEA) model of the same system. As a result, the FEA-based ML approach will directly estimate the stress distribution over the entire system during operations, thus improving the ability to define ad-hoc, safe, and efficient maintenance procedures. The paper initially presents a review of the current state-of-the-art of ML methods applied to finite elements. A surrogate finite element approach based on ML algorithms is also proposed to estimate the time-varying response of a one-dimensional beam. Several ML regression models, such as decision trees and artificial neural networks, have been developed, and their performance is compared for direct estimation of the stress distribution over a beam structure. The surrogate finite element models based on ML algorithms are able to estimate the response of the beam accurately, with artificial neural networks providing more accurate results.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 705
Author(s):  
Josué Trejo-Alonso ◽  
Carlos Fuentes ◽  
Carlos Chávez ◽  
Antonio Quevedo ◽  
Alfonso Gutierrez-Lopez ◽  
...  

In the present work, we construct several artificial neural networks (varying the input data) to calculate the saturated hydraulic conductivity (KS) using a database with 900 measured samples obtained from the Irrigation District 023, in San Juan del Rio, Queretaro, Mexico. All of them were constructed using two hidden layers, a back-propagation algorithm for the learning process, and a logistic function as a nonlinear transfer function. In order to explore different arrays for neurons into hidden layers, we performed the bootstrap technique for each neural network and selected the one with the least Root Mean Square Error (RMSE) value. We also compared these results with pedotransfer functions and another neural networks from the literature. The results show that our artificial neural networks obtained from 0.0459 to 0.0413 in the RMSE measurement, and 0.9725 to 0.9780 for R2, which are in good agreement with other works. We also found that reducing the amount of the input data offered us better results.


Sign in / Sign up

Export Citation Format

Share Document