scholarly journals Using Fluridone Herbicide Systems for Weed Control in Texas Cotton (Gossypium Hirsutum L.)

2020 ◽  
Vol 11 ◽  
pp. 1-14
Author(s):  
James Grichar ◽  
Peter A. Dotray ◽  
Joshua McGinty

Studies were conducted during 2015 through 2018 in south-central, Coastal Bend, and Southern High Plains areas of Texas to evaluate fluridone herbicide systems for weed control and cotton response. Fluridone alone at 0.17 to 0.23 kg ai ha-1 followed by postemergence (POST) herbicides controlled Amaranthus Palmeri 82 to 100% season-long while Cucumis melo control ranged from 92 to 100%. Control of Urochloa Texana with fluridone alone ranged from 40 to 96% early-season while late-season control ranged from 37 to 96%. Fluridone plus fomesafen systems controlled A. Palmeri, C. Melo, and U. Texana at least 98% early season; however, late-season control of A. Palmeri was less than 70% while C. Melo control was 91% and U. Texana control was 80%. Adding a POST application of glyphosate to fluridone plus fomesafen improved control to at least 98% for all three weed species. Fluridone plus fluometuron combinations provided similar control to fluridone plus fomesafen. Adding glyphosate (POST) improved A. Palmeri control to at least 82% season-long. Cotton yields reflect the level of weed control with significantly better yields from fluridone systems compared with the weedy check. However, in the one year when the untreated was maintained weed-free, no differences in cotton yield were noted between the weed-free and any herbicide treatment.

2019 ◽  
Author(s):  
Kaisa M. Werner ◽  
Debalin Sarangi ◽  
Scott A. Nolte ◽  
Peter A. Dotray ◽  
Muthukumar V. Bagavathiannan

AbstractDespite the best weed control efforts, weed escapes are often present in large production fields prior to harvest, contributing to seed rain and species persistence. Late-season surveys were conducted in cotton (Gossypium hirsutum L.) fields in Texas in 2016 and 2017 to identify common weed species present as escapes and estimate seed rain potential of Palmer amaranth (Amaranthus palmeri S. Watson) and waterhemp [A. tuberculatus (Moq.) J.D. Sauer], two troublesome weed species with high fecundity. A total of 400 cotton fields across four major cotton-producing regions in Texas [High Plains (HP), Gulf Coast (GC), Central Texas, and Blacklands] were surveyed. Results have revealed that A. palmeri, Texas millet [Urochloa texana (Buckley) R. Webster], A. tuberculatus, ragweed parthenium (Parthenium hysterophorus L.), and barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] were the top five weed escapes present in cotton fields. Amaranthus palmeri was the most prevalent weed in the HP and Lower GC regions, whereas A. tuberculatus escapes were predominantly observed in the Upper GC and Blacklands regions. On average, 9.4% of an individual field was infested with A. palmeri escapes in the Lower GC region; however, it ranged between 5.1 and 8.1% in the HP region. Average A. palmeri density ranged from 405 (Central Texas) to 3,543 plants ha−1 (Lower GC). The greatest seed rain potential by A. palmeri escapes was observed in the upper HP region (13.9 million seeds ha−1), whereas the seed rain potential of A. tuberculatus escapes was the greatest in the Blacklands (12.9 million seeds ha−1) and the upper GC regions (9.8 million seeds ha−1). Results indicated that seed rain from late-season A. palmeri and A. tuberculatus escapes are significant in Texas cotton, and effective management of these escapes is imperative for minimizing seedbank inputs and impacting species persistence.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Dan D. Fromme ◽  
Peter A. Dotray ◽  
W. James Grichar ◽  
Carlos J. Fernandez

Field studies were conducted during the 2008 and 2009 growing seasons at five locations in the Texas grain sorghum producing regions to evaluate pyrasulfotole plus bromoxynil combinations for weed control and grain sorghum response. All pyrasulfotole plus bromoxynil combinations controlledAmaranthus palmeri,Cucumis melo, andProboscidea louisianicaat least 94% while control ofUrochloa texanawas never better than 69%. Pyrasulfotole plus bromoxynil combinations did result in early season chlorosis and stunting; however, by the end of the growing season no visual injury or stunting differences were noted when compared to the untreated check. Early season grain sorghum chlorosis and stunting with pyrasulfotole plus bromoxynil combinations did not affect grain sorghum yields with the exception of pyrasulfotole at 0.03 kg ai/ha plus bromoxynil at 0.26 kg ai/ha plus atrazine at 0.58 kg ai/ha applied early postemergence followed by pyrasulfotole plus bromoxynil applied mid-postemergence which reduced yield at one of two locations in 2008. Grain sorghum yield increased following all pyrasulfotole plus bromoxynil treatments compared to the untreated check in 2009.


1999 ◽  
Vol 13 (4) ◽  
pp. 791-798 ◽  
Author(s):  
David R. Shaw ◽  
Andrew C. Bennett ◽  
Donald L. Grant

Cloransulam postemergence (POST), diclosulam preemergence (PRE), and flumetsulam preplant incorporated (PPI) and POST were evaluated in six trials at two locations for control of sicklepod and pitted morningglory in soybean. Sicklepod control with cloransulam plus flumetsulam POST was equivalent to chlorimuron POST in seven of eight comparisons both 3 and 6 wk after treatment. Sicklepod control with cloransulam POST was equivalent to chlorimuron in only three of eight comparisons 3 wk after treatment, but late-season control was equivalent in five of six comparisons. Pitted morningglory control with cloransulam alone or in tank-mixture with flumetsulam POST was equivalent to chlorimuron in all comparisons. Control of sicklepod and pitted morningglory was greater in most comparisons when a POST application followed flumetsulam plus trifluralin PPI compared to only trifluralin PPI. In a total PRE stale seedbed system, where all treatments were tank-mixed with pendimethalin plus glyphosate, sicklepod control with all rates of flumetsulam and 26 or 35 g ai/ha diclosulam was equivalent to the standard treatment of imazaquin or metribuzin plus chlorimuron. None of the total PRE programs controlled sicklepod as well as when glyphosate was applied sequentially POST. Pitted morningglory was controlled 83 to 93% with 26 or 35 g/ha diclosulam, equivalent to imazaquin, metribuzin plus chlorimuron, or sequential glyphosate applications 8 wk after the PRE application. Increasing flumetsulam rate increased pitted morningglory control early season, but flumetsulam was not as effective as the other herbicides.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 554C-554
Author(s):  
Yahya K. Al-Hinai ◽  
Teryl R. Roper

This experiment was conducted to determine temporal and spatial weed management characteristics for tart cherry orchards. Annual ryegrass and lambsquarter were planted in tree rows of a 14-year-old tart cherry orchard. Vegetation was controlled with nonresidual herbicides (Gramoxone + B-1956) either all season, May, June, July, August, before harvest, after harvest, or not controlled. Shoot growth measurements showed significantly more growth by trees without weed competition during the entire season, May, June, and before harvest compared to the weedy control and postharvest, July, or August treatments. Weedy early season plots reduced the shoot growth by half. All season, before harvest, May, and June weed-free plots showed higher amounts of leaf N compared with weedy controls or late-season treatments. Early season weed control is more important than late season. Vegetation-free areas of 0, 2, 3, and 4 m2 were maintained during 1998 by postemergence herbicides. Tissue analysis showed higher N concentration in leaves with vegetation controlled to 2 m2 or more compared to the weedy control. The critical vegetation free area for young cherry trees is between 0 and 2 m2.


2022 ◽  
Author(s):  
James L Tracy ◽  
Tuula Kantola ◽  
Kristen A. Baum ◽  
Robert N. Coulson

Abstract South Central US milkweeds (Asclepias) are critical adult nectar and larval food resources for producing the first spring and last summer/fall generations of declining eastern migratory monarch butterflies (Danaus plexippus). This study addresses multiple gaps in assessment of monarch conservation priorities for the South Central US through analyses of monarch larval host selectivity, phenology, and spatial density, as well as the phenology, niche modeled distribution, and land cover selectivity of important milkweed hosts. Results are synthesized to estimate seasonal milkweed resource areas. About 70% of monarch larval activity occurred from mid-March to mid-July (early season) and 30% from mid-August to late November (late season). Twenty-six wild milkweed (Apocynaceae) hosts were mapped, including four new records for North America. Important hosts included Asclepias a. ssp. capricornu, A. viridis, and A. oenotheroides, that were utilized more frequently during early season, and Asclepias latifolia, utilized more frequently during late season. Landscape host selectivity was positive for A. viridis and A. a. ssp. capricornu in late and early seasons, respectively, and negative for A. oenotheroides in late season. Milkweed land cover selectivity was positive for Developed-Open Space and Grassland Herbaceous, and negative for Cultivated Crops and Shrub/Scrub. Seasonal milkweed resource areas and larval spatial densities resolved interior and coastal corridors providing functional connectivity for monarch spring and fall migrations. A potential gap in milkweed land cover benefit was identified in South Texas. The novel merging of milkweed niche models with larval phenology, host selectivity, milkweed phenology, and land cover selectivity informs conservation assessment.


2018 ◽  
Vol 32 (5) ◽  
pp. 623-632 ◽  
Author(s):  
Andrew J. Price ◽  
Jacob P. Williams ◽  
Leah A. Duzy ◽  
J. Scott McElroy ◽  
Elizabeth A. Guertal ◽  
...  

AbstractA 3-yr watermelon experiment was established in fall 2013 to evaluate cover crop, polyethylene mulch, tillage, and herbicide application components for weed control, yield, and profitability. Conservation tillage, either with a cereal rye cover crop alone or integrated with polyethylene mulch, was compared to the standard industry practice of conventional tillage with bedded polyethylene mulch. The study also used a non-bedded conventional tillage system without polyethylene to determine polyethylene and cover crop residue effects. Within each of the four systems, herbicide treatments comprised halosulfuron applied (1) at 26.3 g ai ha–1PRE, (2) at 26.3 g ai ha–1POST, or (3) sequentially at 26.3 g ai ha–1PRE and POST. Each system also had a nontreated control. In addition, clethodim was applied in all plots twice POST at 140 g ai ha–1, except for nontreated in each system. In 2014, polyethylene or cereal rye cover crop effectively controlled tall morningglory, coffee senna, and carpetweed early season in nontreated plots, whereas the integration of the two was effective at controlling common purslane. Tall morningglory and purslane control was insufficient late season regardless of production system and herbicide application. In 2015, polyethylene effectively controlled cutleaf eveningprimrose, sicklepod, and arrowleaf sida early season in nontreated plots. Yellow nutsedge control was insufficient late season regardless of production system and herbicide application. Utilizing sequential halosulfuron applications did not increase weed control over PRE or POST alone in all years. Polyethylene use resulted in yields higher than systems without in all years. Across all 3 yr, net returns were highest for polyethylene mulch systems. The results of this experiment underscore the need for more progress in developing integrated conservation systems for watermelon production. Effective herbicides, low-disturbance cultivation, and/or hand weeding are most likely the key to success in conservation specialty crop systems.


2015 ◽  
Vol 29 (3) ◽  
pp. 419-430 ◽  
Author(s):  
Jatinder S. Aulakh ◽  
Amit J. Jhala

Because of the increasing number of glyphosate-resistant weeds, alternate herbicide-resistant crops and herbicides with different modes of action are required to protect crop yield. Glufosinate is a broad-spectrum POST herbicide for weed control in glufosinate-resistant crops, including soybean. The objective of this study was to compare herbicide programs with glufosinate applied singly at late-POST (LPOST) or sequentially at early POST (EPOST) followed by (fb) LPOST applications and PRE herbicides fb EPOST/LPOST glufosinate alone or tank-mixed with acetochlor, pyroxasulfone, orS-metolachlor in glufosinate-resistant soybean. A field experiment was conducted at the South Central Agriculture Laboratory in Clay Center, NE, in 2012 and 2013. Glufosinate applied in a single LPOST or sequential EPOST fb LPOST application controlled common lambsquarters, common waterhemp, eastern black nightshade, green foxtail, large crabgrass, and velvetleaf ≤ 82% and resulted in a weed density of 6 to 10 plants m−2by the end of the season. Flumioxazin-, saflufenacil-, or sulfentrazone-based premixes provided 84 to 99% control of broadleaf and grass weeds tested in this study at 15 d after PRE application and a subsequent LPOST application of glufosinate alone controlled broadleaf and grass weeds 69 to 93% at harvest, depending on the herbicide program and weed species being investigated. The PRE application of sulfentrazone plus metribuzin fb EPOST glufosinate tank-mixed with acetochlor, pyroxasulfone, orS-metolachlor controlled the tested broadleaf and grass weeds ≥ 90%, reduced density to ≤ 2 plants m−2, and reduced weed biomass to ≤ 10 g m−2and produced soybean yields of ≥ 4,450 and 3,040 kg ha−1in 2012 and 2013, respectively. Soybean injury was 0 to 20% from PRE or POST herbicides, or both and was inconsistent, but transient, during the 2-yr study, and it did not affect soybean yield. Sulfentrazone plus metribuzin applied PRE fb glufosinate EPOST tank-mixed with acetochlor, pyroxasulfone, orS-metolachlor provided the highest level of weed control throughout the growing season and increased soybean yield compared with a single LPOST or a sequential EPOST fb LPOST glufosinate application. Additionally, these herbicide programs provide four distinct mechanisms of action that constitute an effective weed-resistance management strategy in glufosinate-resistant soybean.


Weed Science ◽  
1974 ◽  
Vol 22 (4) ◽  
pp. 330-335 ◽  
Author(s):  
J. H. Dawson

Sequential application of cycloate (S-ethyl N-ethylthiocyclohexanecarbamate) at 3.4 kg/ha, phenmedipham (methylm-hydroxycarbanilatem-methylcarbanilate) at 1.1 kg/ha, and trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) at 0.6 or 0.8 kg/ha, plus certain mechanical measures, controlled weeds during all periods of the growing season without significant injury to sugarbeets (Beta vulgarisL.). Early-season weed control was complete enough that the new selective mechanical thinners could have replaced labor for thinning. The additional labor required to bring the crop to harvest free of weeds was limited to one late-season hoeing, which required less than 10% of the total labor required in traditional weed control schedules without herbicides.


Weed Science ◽  
1974 ◽  
Vol 22 (5) ◽  
pp. 496-499 ◽  
Author(s):  
J. A. Andries ◽  
A. G. Douglas ◽  
A. W. Cole

Near isogenic strains of okra, super okra and normal leaf cotton (Gossypium hirsutum L.) were grown in rows spaced 25, 50, and 100 cm apart and were sprayed with various combinations of trifluralin (α,α,α,trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) and fluometuron [1,1-dimethyl-3-(α,α,α,-trifluoro-m-tolyl)urea]. Neither row spacing nor leaf type had any effect on early season weed control. Late season control was better with normal and okra leaf types than with the super okra leaf type. Weed control was significantly better with additional postemergence application of herbicides than with only preplant and preemergence applications. Although the cotton varied in opening date with herbicide programs there was no difference in total yield.


2004 ◽  
Vol 18 (3) ◽  
pp. 801-809 ◽  
Author(s):  
Peter H. Sikkema ◽  
Allan S. Hamill ◽  
Mirwais M. Qaderi ◽  
Colleen Doucet

Field experiments were conducted in 1998, 1999, and 2000 at two locations (Harrow and Ridgetown) in southwestern Ontario to determine the biologically effective rates (I90) of a commercial formulation of flufenacet plus metribuzin for weed control and processing tomato tolerance. At the proposed label use rate, flufenacet plus metribuzin provided excellent (≥90%) early-season (22 to 29 d after planting) control of velvetleaf, good (80 to 89%) control of barnyardgrass and redroot pigweed, and fair (60 to 79%) control of common lambsquarters. Flufenacet plus metribuzin provided fair late-season (59 to 97 d after planting) control of redroot pigweed and common lambsquarters and poor (≤59%) control of barnyardgrass and velvetleaf. At Harrow and Ridgetown, I90values for early-season weed control ranged from 70 to 1,300 g ai/ha and 50 to 1,900 g ai/ha, respectively. Flufenacet plus metribuzin provided poor weed control at Ridgetown. This result was not attributable to higher weed density or particular weed species but may have been caused by lack of rainfall and too low application rates for the medium-textured soil type. It is estimated that flufenacet plus metribuzin at 1,400 g/ha can control green foxtail season-long, whereas barnyardgrass and common lambsquarters would require 1,900 g/ha. Season-long control of velvetleaf and redroot pigweed would require application rates of 3,200 and 7,100 g/ha, respectively. Only slight early-season crop injury was observed, which was not reflected in yields. Optimum yields of tomatoes were obtained at Harrow at rates lower or slightly higher than the registered rates for corn and soybean. Tomato yields were higher at Harrow than at Ridgetown, which may have been due to differences in soil texture. Tomatoes grown in a medium-textured (Ridgetown) soil appeared to be less competitive against weeds than those grown in a coarse-textured soil (Harrow).


Sign in / Sign up

Export Citation Format

Share Document