scholarly journals Comparison of Glufosinate-Based Herbicide Programs for Broad-Spectrum Weed Control in Glufosinate-Resistant Soybean

2015 ◽  
Vol 29 (3) ◽  
pp. 419-430 ◽  
Author(s):  
Jatinder S. Aulakh ◽  
Amit J. Jhala

Because of the increasing number of glyphosate-resistant weeds, alternate herbicide-resistant crops and herbicides with different modes of action are required to protect crop yield. Glufosinate is a broad-spectrum POST herbicide for weed control in glufosinate-resistant crops, including soybean. The objective of this study was to compare herbicide programs with glufosinate applied singly at late-POST (LPOST) or sequentially at early POST (EPOST) followed by (fb) LPOST applications and PRE herbicides fb EPOST/LPOST glufosinate alone or tank-mixed with acetochlor, pyroxasulfone, orS-metolachlor in glufosinate-resistant soybean. A field experiment was conducted at the South Central Agriculture Laboratory in Clay Center, NE, in 2012 and 2013. Glufosinate applied in a single LPOST or sequential EPOST fb LPOST application controlled common lambsquarters, common waterhemp, eastern black nightshade, green foxtail, large crabgrass, and velvetleaf ≤ 82% and resulted in a weed density of 6 to 10 plants m−2by the end of the season. Flumioxazin-, saflufenacil-, or sulfentrazone-based premixes provided 84 to 99% control of broadleaf and grass weeds tested in this study at 15 d after PRE application and a subsequent LPOST application of glufosinate alone controlled broadleaf and grass weeds 69 to 93% at harvest, depending on the herbicide program and weed species being investigated. The PRE application of sulfentrazone plus metribuzin fb EPOST glufosinate tank-mixed with acetochlor, pyroxasulfone, orS-metolachlor controlled the tested broadleaf and grass weeds ≥ 90%, reduced density to ≤ 2 plants m−2, and reduced weed biomass to ≤ 10 g m−2and produced soybean yields of ≥ 4,450 and 3,040 kg ha−1in 2012 and 2013, respectively. Soybean injury was 0 to 20% from PRE or POST herbicides, or both and was inconsistent, but transient, during the 2-yr study, and it did not affect soybean yield. Sulfentrazone plus metribuzin applied PRE fb glufosinate EPOST tank-mixed with acetochlor, pyroxasulfone, orS-metolachlor provided the highest level of weed control throughout the growing season and increased soybean yield compared with a single LPOST or a sequential EPOST fb LPOST glufosinate application. Additionally, these herbicide programs provide four distinct mechanisms of action that constitute an effective weed-resistance management strategy in glufosinate-resistant soybean.

2017 ◽  
Vol 31 (1) ◽  
pp. 32-45 ◽  
Author(s):  
Amit J. Jhala ◽  
Lowell D. Sandell ◽  
Debalin Sarangi ◽  
Greg R. Kruger ◽  
Steven Z. Knezevic

Glyphosate-resistant (GR) common waterhemp has become a significant problem weed in Nebraska and several Midwestern states. Several populations of GR common waterhemp are also resistant to acetolactate synthase (ALS)-inhibiting herbicides, making them difficult to control with POST herbicides in GR soybean. Glufosinate-resistant (GFR) soybean is an alternate system for controlling GR common waterhemp, justifying the need for evaluating glufosinate-based herbicide programs. The objectives of this study were to compare POST-only herbicide programs (including one-pass and two-pass POST programs) with PRE followed by (fb) POST herbicide programs for control of GR common waterhemp in GFR soybean and their effect on common waterhemp density, biomass, and soybean yield. Field experiments were conducted in 2013 and 2014 near Fremont, NE in a grower’s field infested with GR common waterhemp. Glufosinate applied early- and late-POST provided 76% control of GR common waterhemp at 14 d after late-POST (DALPOST) compared with 93% control with a PRE fb POST program when averaged across treatments. The PRE application of chlorimuron plus thifensulfuron plus flumioxazin,S-metolachlor plus fomesafen or metribuzin, saflufenacil plus dimethenamid-P fb glufosinate provided ≥95% control of common waterhemp throughout the growing season, reduced common waterhemp density to ≤2.0 plants m─2, caused ≥94% biomass reduction, and led to 1,984 to 2,210 kg ha─1soybean yield. Averaged across treatments, the PRE fb POST program provided 82% common waterhemp control at soybean harvest, reduced density to 23 plants m─2at 14 DALPOST, and caused 86% biomass reduction and 1,803 kg ha─1soybean yield compared with 77% control, 99 plants m─2, 53% biomass reduction, and 1,190 kg ha─1yield with POST-only program. It is concluded that PRE fb POST programs with multiple effective modes of action are available for control of GR common waterhemp in GFR soybean.


Weed Science ◽  
1972 ◽  
Vol 20 (1) ◽  
pp. 16-19 ◽  
Author(s):  
L. M. Wax

Delayed planting or “stale seedbed” for weed control in close-drilled (20-cm rows) soybeans [Glycine max(L.) Merr. ‘Amsoy’] was evaluated for 3 years. The system combined final seedbed preparation 3 to 6 weeks before planting with herbicide application at planting time. The best control of six weed species and highest soybean yields were obtained bya,a,a-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine (trifluralin) application at the time of seedbed preparation followed by 3-(3,4-dichlorophenyl)-1-methylurea (linuron) application at planting and by linuron application at planting without the early trifluralin application. Applications of 1,1′-dimethyl-4,4′-bipyridinium ion (paraquat) at planting, either with or without trifluralin treatments, resulted in less weed control and lower soybean yields than comparable treatments with linuron. However, even the best treatments failed to provide the weed control necessary to prevent substantial soybean yield reduction in heavy infestations of weeds that emerge in large numbers after planting, and that resist the phytotoxic action of the herbicides.


Weed Science ◽  
1984 ◽  
Vol 32 (6) ◽  
pp. 762-767 ◽  
Author(s):  
N. C. Glaze ◽  
C. C. Dowler ◽  
A. W. Johnson ◽  
D. R. Sumner

Six multiple-cropping systems composed of: a) turnip (Brassica campestrisspp.rapifera), corn (Zea maysL.), and snapbean (Phaseolus vulgarisL.); b) turnip, peanut (Arachis hypogaeaL.), and snapbean; c) turnip, corn, and turnip; d) turnip, peanut, and turnip; e) snapbean, soybean [Glycine max(L.) Merr.], and cabbage (Brassica oleraceaL.); and f) turnip, cucumber (Cucumis sativusL.), cowpea [Vigna unguiculata(L.) Walp.], and turnip were subjected to nematicide and weed control programs of cultivation or herbicides. Herbicide programs were superior to cultivation in control of weeds. Weeds remaining in the row following cultivation competed severely with crops. Weed species remaining were altered depending on the method of control and crop. Yellow nutsedge (Cyperus esculentusL. ♯3CYPES) increased rapidly in all herbicide programs but not in cultivated plots. Pigweeds (Amaranthusspp.) were controlled by herbicides but increased in cultivated plots. Corn, peanut, soybean, and spring snapbean yields were higher in herbicide treatments than in cultivated treatments. Cucumber was the only crop that had increased yields for both main effects, herbicide and nematicide. Turnip was consistently injured in herbicide treatments, which was believed to be caused by residues from previous crops interacting with pathogens and possible allelopathic effects of decaying organic matter.


2020 ◽  
Vol 34 (6) ◽  
pp. 834-842
Author(s):  
Caio A. C. G. Brunharo ◽  
Seth Watkins ◽  
Bradley D. Hanson

AbstractWeed control in tree nut orchards is a year-round challenge for growers that is particularly intense during winter through summer as a result of competition and interference with management and harvest operations. A common weed control program consists of an application of a winter PRE and POST herbicide mixture, followed by a desiccation treatment in early spring and before harvest. Because most spring and summer treatments depend on a limited number of foliar-applied herbicides, summer-germinating species and/or herbicide-resistant biotypes become troublesome. Previous research has established effective PRE herbicide programs targeting winter glyphosate-resistant weeds. However, more recently, growers have reported difficulties in controlling several summer-germinating grass weeds with documented or suspected resistance to the spring and summer POST herbicide programs. In this context, research was conducted to evaluate a sequential PRE approach to control winter- and summer-germinating orchard weeds. Eight field experiments were conducted in tree nut orchards to evaluate the efficacy of common winter herbicide programs and a sequential herbicide program for control of a key summer grass weed species. In the sequential-application strategy, three foundational herbicide programs applied in the winter were either mixed with pendimethalin, followed with pendimethalin in March, or applied as a split application of pendimethalin in both winter and spring. Results indicate that the addition of pendimethalin enhanced summer grass weed control throughout the crop growing season by up to 31%. Applying all or part of the pendimethalin in the spring improved control of the summer grass weed junglerice by up to 49%. The lower rate of pendimethalin applied in the spring performed as well as the high rate in the winter, suggesting opportunities for reducing herbicide inputs. Tailoring sequential herbicide programs to address specific weed challenges can be a viable strategy for improving orchard weed control without increasing herbicide use in some situations.


2015 ◽  
Vol 95 (5) ◽  
pp. 973-981 ◽  
Author(s):  
Amit J. Jhala ◽  
Mayank S. Malik ◽  
John B. Willis

Jhala, A. J., Malik, M. S. and Willis, J. B. 2015. Weed control and crop tolerance of micro-encapsulated acetochlor applied sequentially in glyphosate-resistant soybean. Can. J. Plant Sci. 95: 973–981. Acetochlor, an acetamide herbicide, has been used for many years for weed control in several crops, including soybean. Micro-encapsulated acetochlor has been recently registered for preplant (PP), pre-emergence (PRE), and post-emergence (POST) application in soybean in the United States. Information is not available regarding the sequential application of acetochlor for weed control and soybean tolerance. The objectives of this research were to determine the effect of application timing of micro-encapsulated acetochlor applied in tank-mixture with glyphosate in single or sequential applications for weed control in glyphosate-resistant soybean, and to determine its impact on soybean injury and yields. Field experiments were conducted at Clay Center, Nebraska, in 2012 and 2013, and at Waverly, Nebraska, in 2013. Acetochlor tank-mixed with glyphosate applied alone PP, PRE, or tank-mixed with flumioxazin, fomesafen, or sulfentrazone plus chlorimuron provided 99% control of common waterhemp, green foxtail, and velvetleaf at 15 d after planting (DAP); however, control declined to ≤40% at 100 DAP. Acetochlor tank-mixed with glyphosate applied PRE followed by early POST (V2 to V3 stage of soybean) or late POST (V4 to V5 stage) resulted in ≥90% control of common waterhemp and green foxtail, reduced weed density to ≤2 plants m−2 and biomass to ≤12 g m−2, and resulted in soybean yields >3775 kg ha−1. The sequential applications of glyphosate plus acetochlor applied PP followed by early POST or late POST resulted in equivalent weed control to the best herbicide combinations included in this study and soybean yield equivalent to the weed free control. Injury to soybean was <10% in each of the treatments evaluated. Micro-encapsulated acetochlor can be a good option for soybean growers for controlling grasses and small-seeded broadleaf weeds if applied in a PRE followed by POST herbicide program in tank-mixture with herbicides of other modes of action.


2018 ◽  
Vol 36 (0) ◽  
Author(s):  
A.L. NUNES ◽  
J. LORENSET ◽  
J.E. GUBIANI ◽  
F.M. SANTOS

ABSTRACT: A 3-year field study was conducted to assess the potential for using pre-emergent (PRE) herbicides tank mixed with glyphosate as a means of controlling weed species in soybean. In 2011/12, 2012/13 and 2013/14 growing sessions soybean cultivar Brasmax Apollo RR was planted under residues of rye. The herbicide treatments glyphosate (gly) (1,296 g a.i. ha-1), gly + S-metolachlor (1,296 + 1,920), gly + imazaquin (1,296 +161), gly + pendimethalin (1,296 + 1,000), gly + metribuzin (1,296 + 480), gly + 2.4-D amine (1,296 + 1,209) was applied in pre-emergence (PRE) over rye crop residues two days before soybean sowing. In addition, full season weed-free and weedy control plots were included. Gly + S-metolachlor and gly + pendimethalin reduced the horseweed density from 48 to 3 and 6 plants m-2, respectively. The mix containing gly + metribuzin and gly + 2.4-D amine and gly applied alone had no effect in the horseweed control. The mix containing gly + metribuzin, gly + 2.4-D amine, gly + imazaquin and gly applied alone had no effect in the crabgrass control. In contrast gly + S-metolachlor and gly + pendimethalin reduced the crabgrass density from 70 to 0 and 1 plant m-2, respectively. The soybean yield was higher with weed-free, S-metolachlor and metribuzin treatments. The use of an herbicide with residual effect had impact on weed management and soybean yield. In conclusion, a greater control of horseweed and crabgrass occurred when S-metolachlor or pendimethalin was applied PRE.


2021 ◽  
Vol 3 ◽  
Author(s):  
Sarah Striegel ◽  
Maxwel C. Oliveira ◽  
Ryan P. DeWerff ◽  
David E. Stoltenberg ◽  
Shawn P. Conley ◽  
...  

Roundup Ready 2 Xtend® [glyphosate- and dicamba-resistant (DR)] soybean is a novel trait option for postemergence (POST) control of herbicide-resistant broadleaf weeds in soybean. With increased use of labeled dicamba products POST in DR soybean and recommendations to include a soil-residual herbicide POST (e.g., layered residual approach), research on how combinations of these approaches influence weed control, weed seed production, and soybean grain yield is warranted. The objective of this research was to evaluate the effects of (1) flumioxazin applied preemergence (PRE) followed by (fb) dicamba plus glyphosate applied POST at different crop developmental stages and (2) acetochlor POST as a layered residual approach on weed control, weed seed production, and soybean yield to determine the optimal POST timing in DR soybean. A field study was conducted in Wisconsin at three sites in 2018 and four sites in 2019 to evaluate flumioxazin (43.4 g ai ha−1, WDG 51%) PRE fb dicamba (560 g ae ha−1, SL) plus glyphosate (1,101 g ae ha−1, SL) POST in DR soybean at three stages: early-POST (EPOST, V1-V2), mid-POST (MPOST, V3-V4), and late-POST (LPOST, V5-V6/R1) with or without a soil-residual herbicide POST (acetochlor, 1,262 g ai ha−1, ME). Weed community composition was site-specific; difficult-to-control broadleaf species included giant ragweed (Ambrosia trifida L.) and waterhemp [Amaranthus tuberculatus (Moq.) J.D. Sauer]. Dicamba plus glyphosate applied MPOST and LPOST provided greater control, weed biomass reduction, and density reduction of giant ragweed and waterhemp when compared with EPOST treatments. Giant ragweed and waterhemp had not reached 100% cumulative emergence at EPOST, and plants that emerged after EPOST produced seed. There was some benefit to including acetochlor as a layered residual at EPOST as indicated by a residual by POST timing interaction for waterhemp density reduction. Complete waterhemp control was not attained at one site-year. For remaining site-years, dicamba plus glyphosate applied MPOST (V3-V4) provided season-long weed control, reduced weed seed production, and optimized soybean grain yield compared with other POST treatments. Results highlight the importance of timely POST applications and suggest utilization of a POST layered residual needs to be timed appropriately for the window of active weed species emergence.


1996 ◽  
Vol 10 (2) ◽  
pp. 327-336 ◽  
Author(s):  
J. Rolf Olsen ◽  
Jayson K. Harper ◽  
William S. Curran

A computer model which selects least cost herbicide programs given a minimum desired level of weed control could provide growers with economical weed management options. Using an integer programming approach, a herbicide selection model was developed for corn production under Pennsylvania conditions. Models for three rotations (corn-soybean, corn-corn, and corn-alfalfa) under three tillage systems (conventional tillage, reduced tillage, and no-till) that evaluated 21 soil-applied and 13 postemergence herbicide options for 24 weeds were developed. Each model minimizes the cost of a herbicide program subject to a desired level of weed control. By selecting the weed species to be controlled and the level of control desired, customized herbicide programs can be generated. The models can also be used to evaluate the cost of changing the level of control desired for an individual weed species or set of weeds.


1995 ◽  
Vol 9 (2) ◽  
pp. 236-242 ◽  
Author(s):  
Troy A. Bauer ◽  
Karen A. Renner ◽  
Donald Penner

Imazethapyr and bentazon were applied with petroleum oil adjuvant in a factorial arrangement to weed species in greenhouse and field research to determine if postemergence weed control by imazethapyr was antagonized when bentazon was tank-mixed. Tank-mixing 840 g/ha of bentazon with 13 or 27 g/ha of imazethapyr increased redroot pigweed and eastern black nightshade dry weight as compared to Colby's expected values in the greenhouse. However, weed control was not reduced in field studies. Subsequent greenhouse studies indicated that soil interception and resulting root uptake of imazethapyr increased redroot pigweed control. Bentazon decreased foliar absorption of14C-imazethapyr by 15% and translocation of14C from the treated leaf by more than 50% compared tol4C-imazethapyr applied alone.


2010 ◽  
Vol 24 (3) ◽  
pp. 319-325 ◽  
Author(s):  
Santiago M. Ulloa ◽  
Avishek Datta ◽  
Stevan Z. Knezevic

Propane flaming could be an effective alternative tool for weed control in organic cropping systems. However, response of major weeds to broadcast flaming must be determined to optimize its proper use. Therefore, field experiments were conducted at the Haskell Agricultural Laboratory, Concord, NE in 2007 and 2008 using six propane doses and four weed species, including green foxtail, yellow foxtail, redroot pigweed, and common waterhemp. Our objective was to describe dose–response curves for weed control with propane. Propane flaming response was evaluated at three different growth stages for each weed species. The propane doses were 0, 12, 31, 50, 68, and 87 kg ha−1. Flaming treatments were applied utilizing a custom-built flamer mounted on a four-wheeler (all-terrain vehicle) moving at a constant speed of 6.4 km h−1. The response of the weed species to propane flaming was evaluated in terms of visual ratings of weed control and dry matter recorded at 14 d after treatment. Weed species response to propane doses were described by log-logistic models relating propane dose to visual ratings or plant dry matter. Overall, response of the weed species to propane flaming varied among species, growth stages, and propane dose. In general, foxtail species were more tolerant than pigweed species. For example, about 85 and 86 kg ha−1were the calculated doses needed for 90% dry matter reduction in five-leaf green foxtail and four-leaf yellow foxtail compared with significantly lower doses of 68 and 46 kg ha−1of propane for five-leaf redroot pigweed and common waterhemp, respectively. About 90% dry matter reduction in pigweed species was achieved with propane dose ranging from 40 to 80 kg ha−1, depending on the growth stage when flaming was conducted. A similar dose of 40 to 60 kg ha−1provided 80% reduction in dry matter for both foxtail species when flaming was done at their vegetative growth stage. However, none of the doses we tested could provide 90% dry matter reduction in foxtail species at flowering stage. It is important to note that foxtail species started regrowing 2 to 3 wk after flaming. Broadcast flaming has potential for control or suppression of weeds in organic farming.


Sign in / Sign up

Export Citation Format

Share Document