Effect of Spray Directions on the Crystal Growth of Fluorine-Doped Tin Oxide One-dimensional nanostructured Thin Films

2016 ◽  
Vol 12 (1) ◽  
pp. 4165-4171
Author(s):  
Ajith Bandara ◽  
Masayuki Okuya ◽  
Masaru Shimomura ◽  
Kenji Murakami ◽  
Rajapakse M.G. Rajapakse

In this study the novel spray pyrolysis technique, known as rotational, pulsed and atomized spray deposition method was used to fabricate vertically aligned and well separated FTO One-dimensional nanostructures on glass substrate. It was confirmed that spraying at low angle to the substrate is mandatory for the crystal growth of vertically aligned nanorods. The preferential orientation of nanorods crystallites along the (101) direction and prepared nanorods thin film showed an excellent transparency of 84.8% and a low resistance of 26.7 Ω/sq.

2015 ◽  
Vol 19 (6) ◽  
pp. 484-497 ◽  
Author(s):  
Chuang Han ◽  
Siqi Liu ◽  
Zi-Rong Tang ◽  
Yi-Jun Xu

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Rodolfo Panerai ◽  
Antonio Pittelli ◽  
Konstantina Polydorou

Abstract We find a one-dimensional protected subsector of $$ \mathcal{N} $$ N = 4 matter theories on a general class of three-dimensional manifolds. By means of equivariant localization we identify a dual quantum mechanics computing BPS correlators of the original model in three dimensions. Specifically, applying the Atiyah-Bott-Berline-Vergne formula to the original action demonstrates that this localizes on a one-dimensional action with support on the fixed-point submanifold of suitable isometries. We first show that our approach reproduces previous results obtained on S3. Then, we apply it to the novel case of S2× S1 and show that the theory localizes on two noninteracting quantum mechanics with disjoint support. We prove that the BPS operators of such models are naturally associated with a noncom- mutative star product, while their correlation functions are essentially topological. Finally, we couple the three-dimensional theory to general $$ \mathcal{N} $$ N = (2, 2) surface defects and extend the localization computation to capture the full partition function and BPS correlators of the mixed-dimensional system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoshitake Masuda

AbstractCold crystallization of SnO2 was realized in aqueous solutions, where crystal growth was controlled to form SnO2 (101) nanosheet assembled films for devices such as chemical sensors. The nanosheets grew directly on a fluorine-doped tin oxide substrate without a seed layer or a buffer layer. The nanosheets had a thickness of 5–10 nm and an in-plane size of 100–1600 nm. Moreover, the large flat surface of the (101) facet was metastable. The thickness of the SnO2 (101) nanosheet assembled film was approximately 800 nm, and the film had a gradient structure that contained many connected nanosheets. TEM results revealed that the predominate branch angles between any two connected nanosheets were 90° and 46.48°, corresponding to type I and type II connections, respectively. These connections were consistent with the calculations based on crystallography. Crystallographic analysis clarified the characteristic crystal growth of the SnO2 (101) nanosheet assembled film in the aqueous solution. Furthermore, we demonstrate that the metastable (101) facet can be exploited to control the rate of crystal growth by adjusting the etching condition.


1987 ◽  
Vol 97 ◽  
Author(s):  
Steven A. Sunshine ◽  
Doris Kang ◽  
James A. Ibers

ABSTRACTThe use of A2 Q/Q melts (A - alkali metal, Q - S or Se) for the synthesis of new one-dimensional solid-state materials is found to be of general utility and is illustrated here for the synthesis of K4 Ti3 SI4. Reaction of Ti metal with a K2 S/S melt at 375°C for 50 h affords K4 Ti3 SI4. The structure possesses one-dimensional chains of seven and eightcoordinate Ti atoms with each chain isolated from all others by surrounding K atoms. There are six S-S pairs (dave - 2.069(3) Å) so that the compound is one of TiIV and may be described as K4 [Ti3 (S)2 (S2)6]. Electrical conductivity measurements indicate that this material is a semiconductor.


2014 ◽  
Vol 250 ◽  
pp. 148-156 ◽  
Author(s):  
Xiaomin Guo ◽  
Xiangting Dong ◽  
Jinxian Wang ◽  
Wensheng Yu ◽  
Guixia Liu

Sign in / Sign up

Export Citation Format

Share Document