scholarly journals EFFECTS OF HARPIN AND MODIFIED ATMOSPHERE PACKAGING (MAP) ON QUALITY TRAITS AND BIOACTIVE COMPOUNDS OF SWEET CHERRY FRUITS THROUGHOUT COLD STORAGE AND SHELF LIFE

2018 ◽  
Vol 17 (4) ◽  
pp. 61-71 ◽  
Author(s):  
Erdal Aglar
2019 ◽  
Vol 18 (5) ◽  
pp. 13-26 ◽  
Author(s):  
Saadet Koc Guler ◽  
Orhan Karakaya ◽  
Medeni Karakaya ◽  
Burhan Ozturk ◽  
Erdal Aglar ◽  
...  

The effects of combined aminoethoxyvinylglycine (AVG) and modified atmosphere packaging (MAP) treatments on quality attributes of ‘0900 Ziraat’ sweet cherry fruit during the cold storage and shelf life were investigated in this study. Significantly lower weight loss and decay ratios were observed in all treatments throughout the cold storage period as compared to the control. A similar case was also observed referring to the shelf life. MAP treatments were found to be more effective in retarding the weight loss and decay ratio. Higher hue angle values were measured from AVG-treated fruit at harvest. Similarly, hue angle of AVG and MAP-treated fruit were also higher than for the control in all periods of cold storage and on the 7th and 21st day of shelf life. AVG-treated fruit had higher firmness values than the control at harvest. However, higher firmness values were measured from MAP-treated fruit during the cold storage and shelf life. At the end of cold storage, lower SSC and higher titratable acidity values were observed in AVG and MAP-treated fruit than in the control. AVG + MAP treatments yielded significantly higher vitamin C, total phenolics and antioxidant activity values than the control. Contrarily, the control fruit had significantly higher total monomeric anthocyanin than the other treatments. Based on current findings, it was concluded that combined AVG + MAP treatments could be used as a beneficial tool to maintain the quality of sweet cherry fruit throughout the cold storage and shelf life.


2020 ◽  
Vol 12 (18) ◽  
pp. 7547 ◽  
Author(s):  
Rabia Kanwal ◽  
Hadeed Ashraf ◽  
Muhammad Sultan ◽  
Irrum Babu ◽  
Zarina Yasmin ◽  
...  

Okra possesses a short shelf-life which limits its marketability, thereby, the present study investigates the individual and combined effect of 1-methylcyclopropene (1-MCP) and modified atmosphere packaging (MAP) on the postharvest storage life of okra. The treated/ untreated okra samples were stored at ambient (i.e., 27 °C) and low (i.e., 7 °C) temperatures for eight and 20 days, respectively. Results revealed that the 1-MCP and/or MAP treatment successfully inhibited fruit softening, reduction in mucilage viscosity, and color degradation (hue angle, ∆E, and BI) in the product resulting in a longer period of shelf-life. However, MAP with or without 1-MCP was more effective to reduce weight loss in okra stored at both ambient and cold storage conditions. Additionally, ascorbic acid and total antioxidants were also retained in 1-MCP with MAP during cold storage. The 1-MCP in combination with MAP effectively suppressed respiration rate and ethylene production for four days and eight days at 27 °C and 7 °C temperature conditions, respectively. According to the results, relatively less chilling injury stress also resulted when 1-MCP combined with MAP. The combined treatment of okra pods with 1-MCP and MAP maintained the visual quality of the product in terms of overall acceptability for four days at 20 °C and 20 days at 7 °C.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1329
Author(s):  
Me-Hea Park ◽  
Eun-Ha Chang ◽  
Hae-Jo Yang ◽  
Jung-Soo Lee ◽  
Gyung-Ran Do ◽  
...  

Oriental melons have a relatively short shelf life as they are harvested during the summer season and susceptible to cold-induced injuries. Typical chilling injury when stored at 4 °C is expressed as browning of the fruit suture. To prolong the shelf life and reduce browning of the fruit, the effects of modified atmosphere packaging (MAP), X-tend modified atmosphere (MA)/modified humidity (MH) bulk packaging (XF), and polyethylene (PE) packaging, on oriental melons were investigated during storage at 4 °C and 10 °C for 14 days and under retail display conditions at 20 °C. The O2 concentrations in PE packages stored at 4 °C and 10 °C ranged from 17.4 to 18.5%, whereas those in XF packages were reduced to 16.3–16.6%. The CO2 content of XF package (4.2–4.6%) was higher than that of PE package (1.4–1.9%) stored at 4 °C or 10 °C. Relative humidity (RH) saturated in the PE packages but not in the XF packages after seven days of storage. Furthermore, PE packages performed better at maintaining melon weight and firmness than XF packages during storage at 10 °C for 14 days and under retail display conditions at 20 °C. PE and XF packages effectively reduced the browning index of the peel and white linear sutures of oriental melons compared with the unpackaged control during cold storage at 4 °C, and this observation was maintained at the retail display condition at 20 °C. The enhanced CO2 levels, reduced O2 levels, and optimal RH values that were provided by the MAP, prevented the browning symptoms, and improved the marketability and shelf life of oriental melons.


HortScience ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 511-523 ◽  
Author(s):  
Hui-Juan Zhou ◽  
Zheng-Wen Ye ◽  
Ming-Shen Su

Cold storage is used to delay the senescence of peaches, but it can also lead to internal browning and aroma loss. Modified atmosphere packaging (MAP) has been reported to inhibit the internal browning and prolong the storage time. Four MAP treatments in the present study were set as follows: I: O2 1% to 3%, CO2 3% to 5%, and N2 92% to 96%; II: O2 3% to 5%, CO2 3% to 5%, and N2 90% to 94%; III: O2 6% to 8%, CO2 3% to 5%, and N2 87% to 91%; and control (CK): O2 21%, CO2 0.03%, and N2 79%. The concentration of sugars, acids, aroma compounds, superoxide radical (O2−), hydrogen peroxide (H2O2), and malondialdehyde (MDA), as well as the activities of enzymes, such as superoxide dismutase (SOD), peroxidase (POD), lipoxygenase (LOX), hydroperoxide lyase (HPL), alcohol dehydrogenase, and alcohol O-acyltransferase (AAT) activities, were investigated. The results revealed that MAP, especially for treatment II, could inhibit the loss of flavors such as sugars, acids, and aroma compounds; maintain higher SOD and POD activities; and inhibit the accumulation of O2−, H2O2, and MDA during shelf life after storage at low temperature for 30 days. It could also inhibit the LOX and HPL activities at low temperature, but maintain higher LOX and HPL activities during shelf life. These findings indicated that treatment II could prolong the storage time to 30 days and shelf life for 3 days; maintain the higher content of sugars, acids, and aroma compounds; protect the cell membrane from oxidative injury; and inhibit internal browning during cold storage and shelf life.


Sign in / Sign up

Export Citation Format

Share Document