scholarly journals EXTENDING VASE LIFE OF CUT Strelitzia reginae Aiton FLOWERS BY COBALT CHLORIDE, CERIUM NITRATE, SILVER NANOPARTICLES AND NANOSIL

2021 ◽  
Vol 20 (4) ◽  
pp. 89-99
Author(s):  
Jahangir Azarhoosh ◽  
Davood Hashemabadi ◽  
Leila Asadpour ◽  
Behzad Kaviani

Cut flowers of Strelitzia reginae Aiton (Strelitziaceae) generally have a short vase life. Vascular blockage is a major reason for this. In this paper, we evaluated the effects of pulse treatment with disinfectants including cobalt chloride (CoCl2), cerium nitrate (Ce(NO3)3), silver nanoparticles (SNP) and Nanosil on the vase life and physiological characteristics of cut S. reginae flowers stems. Cut flowers kept in the vase solution containing these disinfectants showed significant increase in solution uptake, the content of total protein and pigments of petals, the activities of antioxidantive active enzymes superoxide dismutase (SOD) and ascorbate peroxidase (APX). Also, the number of stem-end bacteria and malondialdehyde (MDA) content in cut flowers were decreased as compared to control. Based on obtained results, we introduce Ce(NO3)3 as the most effective treatment to extend the vase life of cut S. reginae flowers. More so with the concentration of 300 µM which induced the maximum solution uptake and SOD and APX activities that resulted in the longest vase life. Findings of the present study suggested that Ce(NO3)3 prolonged postharvest longevity of S. reginae by increasing the solution uptake and SOD and APX activity and decreasing the MDA content. The use of Ce(NO3)3 reduces the use of chemicals and make saving in costs. The highest bacterial population of micro-organisms on cut stem ends were Escherichia coli, Bacillus, Staphylococcus and Streptococcus. Cerium nitrate had the strongest effect on reduction of these bacterial population and yeast.

2020 ◽  
Vol 23 (4) ◽  
pp. 1818-1827
Author(s):  
Tu Thi Anh Le

Introduction: The procedure to synthesize silver nanoparticles (SNPs) from Prunus cerasoides leaf extract and their effect on vase life and flower quality of cut carnation were investigated. Methods: SNPs were bio-synthesized from Prunus cerasoides leaf extract and characterized by using UV-Vis technique, TEM, and SEM images. The postharvest responses of carnation cut flowers to the biosynthesis SNPs were evaluated through vase life, relative fresh weight, vase solution uptake, flower diameter of cut carnation. Results: SNPs were synthesized under optimum conditions, including using the extract of leaf heating at 60 oC in 30 min, 4 mM of silver nitrate, pH of 11, and 180 min of reaction time. SNPs exhibited antimicrobial activity and then alleviated the bacterial development in the preservative solution. All treatments with SNPs had improved the vase life and quality of cut carnation compared to the control. A vase solution containing 2% sucrose enhanced the carnation cut flowers. Conclusions: The preservative solution containing 25 ppm SNPs and 2% sucrose showed the best effect. SNPs could be used as a promising antibacterial agent applied in the preservative solution for cut carnation flowers.


2009 ◽  
Vol 57 (2) ◽  
pp. 165-174
Author(s):  
F. Hassan

This investigation was carried out to study the effect of 100, 200 and 300 ppm 8-hydroxyquinoline sulphate (8-HQS) and 5 and 10% sucrose treatments on the vase life and post-harvest quality of cut flowers of Strelitzia reginae Ait. and Hippeastrum vittatum Herb. cv. Apple Blossome. All possible combinations of 8-HQS and sucrose were tested. The treatments were applied as holding solutions, and control flowers were held in distilled water till the end of the experiment. All the treatments significantly increased the vase life and number of open florets of Strelitzia reginae cut flowers compared to the control. Applying 8-HQS and sucrose treatments in both seasons improved the vase life and floret longevity of Hippeastrum vittatum cut flowers. In addition, the percentage of fresh weight gain from the initial weight and the carbohydrate content were also enhanced in both cut flower crops. In order to obtain the highest post-harvest quality of Strelitzia reginae Ait. and Hippeastrum vittatum Herb. cv. Apple Blossome cut flowers, treatment with 200 ppm 8-HQS + 10% sucrose was recommended.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meisam Mohammadi ◽  
Mitra Aelaei ◽  
Mehdi Saidi

AbstractShort vase life, capitulum wilting, neck bending, and postharvest chilling injury (CI) are major disorders have negative impact on quality and marketing of gerbera cut flowers. Low storage temperatures prolonging the vase life, but on the other hand leads serious CI which decreases the quality and consumer preferences. Spermine (SPER) and γ-aminobutyric acid (GABA) were identified as anti-aging factors delay the senescence and elevate the chilling tolerance in many species. Greenhouse-grown gerbera cv. ‘Stanza’ sprayed with 2 mM SPER and 1 mM GABA twice (2 T) or thrice (3 T). Cut flowers were stored at 1.5 °C and 8 °C postharvest to study the effects of GABA and SPER on senescence and CI. Vase life, CI and quality of cut flowers were improved by GABA and SPER treatments. No CI was observed in GABA-treated flowers at 1.5 °C; while, flowers sprayed with water showed severe CI. GABA treatments efficiently prolonged the vase life for 6–7 days more than the control (15 days). GABA and SPER increased the fresh weight, solution uptake, protein and proline contents, catalase, peroxidase, and superoxide dismutase activities, while decreased the electrolyte leakage, H2O2, and malondialdehyde contents, polyphenol oxidase, lipoxygenase, and phospholipase D activities. GABA and SPER significantly prolonged the vase life and prevented degradation of proteins and chilling damage and increased capacity of detoxifying and scavenging of H2O2 and reactive oxygen species (ROS), led to alleviate the negative consequences of the senescence and CI.


2020 ◽  
Vol 17 (4) ◽  
pp. 673-688
Author(s):  
Tran Lap Xuan ◽  
Le Ba Le ◽  
Le Thi Anh Tu

A biological method for synthesizing silver nanoparticles (SNPs) using the leaf extracts of Arachis pintoi Krapov. & W.C. Greg. was developed.  The optimum conditions of input materials were found with leaf autoclaving in 15 min, 20 g fresh leave, and 4 mM of silver nitrate (AgNO3). To study the role of time, temperature, and solution pH of the reaction, varying time reaction (5, 30, 60, 90, 120, 150, and 180 min), temperature reaction (10, 20, 30, 40, and 50oC) and pH of the solution (1, 3, 5, 7, 9, and 11) were investigated. The optimal biosynthesis conditions were achieved in 180 min of reaction time at 50oC and pH 11. The obtained nanoparticles have spherical and oblong in shape with average size of 26.4 nm. The SNPs in 4 concentrationss (5, 15, 25, and 35 ppm) combined with and without 2% sucrose extended vase life, enlarged flower diameter, and maintained increase the relative fresh weight with vase solution uptake rate. SNPs inhibited significantly the bacterial growth in the stem end and vase solution, reduced the blockage in stems and therefore promoted the postharvest quality of carnation cut flowers. Out of the treatments, administration of 5 ppm SNPs with 2% sucrose of vase solution gave the best results for all parameters. The biosynthesis SNPs could be applied as a promising preservative solution for carnation cut flowers.


2019 ◽  
Vol 6 (2) ◽  
pp. 108-115 ◽  
Author(s):  
Motahareh Ershad Langroudi ◽  
Davood Hashemabadi ◽  
Sepideh Kalatejari ◽  
Leila Asadpour

In this study, effects of different concentrations of silver nanoparticles (NS), salicylic acid (SA), spermine (SP), dill (AN), and cumin (CM) essential oils are investigated on physiological and microbiological traits of alstroemeria (Alstroemeria hybrida) cut flowers during a preharvest and postharvest application. The study was performed as a factorial experiment based on a randomized completely design with three replications. During the experiment the vase life of cut flower was evaluated in terms of chlorophylls a, b and total, SOD, MDA, stem end bacterial colonies and bacterial identification. The results showed that using high concentrations of nanosilver (NS2) increased significantly the vase life of cut Alstroemeria in preharvest and postharvest. 11 colonies of bacteria were identified in stem end of cut alstroemeria flowers.


2016 ◽  
Vol 24 (1) ◽  
pp. 13-19 ◽  
Author(s):  
Abdolrahman Rahimian-Boogar ◽  
Hassan Salehi ◽  
Noshin Mir

Abstract Quality of cut flowers is an important issue at postharvest as well as an important factor contributing to marketing of and profitability from the tuberose. In this study, the effects of citric acid (CA) and hydrogen peroxide (H2O2) added to the vase water on postharvest quality of tuberose cut flowers were investigated. CA was applied in concentrations of 50, 100, 200, 400 mg·dm−3 and H2O2 in concentrations of 10, 20, 40 and 80 mg·dm−3 and distilled water as control treatment. Results showed that both compounds had significant positive effects on solution uptake, wilting and abscission of florets, relative water content, chlorophyll content, and vase life duration. The effects of 100 and 200 mg·dm−3 of CA and 20 and 40 mg·dm−3 of H2O2 proved to be more effective than other treatments. Both compounds increased the vase life of tuberose cut flowers and CA at concentrations 100 and 200 mg dm−3 and H2O2 at concentrations 20 and 40 mg dm−3 doubled this time up to 14-17 days.


2013 ◽  
Vol 5 (4) ◽  
pp. 490-493 ◽  
Author(s):  
Seyed Hossein NEMATI ◽  
Ali TEHRANIFAR ◽  
Behnam ESFANDIARI ◽  
Azar REZAEI

Lily is one of the prominent cut flowers on the international markets, so that its longevity is an important post-storage attribute. Blockage of xylem vessels and insufficient water uptake contributes to the short vase life of cut flowers. Bacteria block stem xylem vessels and because of that reduce rates of water supply to flowers. Nano silver has antimicrobial effects at low concentration. Prolongation of vase life cut lilies (L. orientalis ‘Bouquet’) flowers by nano-silver particles was studied. Cut flowers were kept in vase containing 5, 15, 25, 30 ppm of nano-silver solutions and deionized water as control treatment under controlled conditions. During vase period, vase life, vase solution uptake, initial fresh and bacterial numbers were measured. According to the results, all nano-silver treatments extended the longevity of cut flowers compare to control. Among these treatments the concentration of 30 ppm of silver-nano showed the highest vase solution uptake, initial fresh weight and lowest bacteria colony during the first 2 days of vase life. It was concluded that nano silver particles had a high potential for eliminating of bacterial contaminants. These for suggest that application of solutions containing superior advantageous of nano-silver particles is recommended to improve postharvest of L. orientalis ‘Bouquet’.


2020 ◽  
Vol 26 (4) ◽  
pp. 607-613
Author(s):  
Onur Sefa Alkaç ◽  
Osman Nuri Öcalan ◽  
Mehmet Güneş

Abstract This study was carried out on the flowers of 'Le Castel' Dahlia (starflower) cultivated in Tokat Gaziosmanpaşa University Agricultural Research and Application Center in 2019. The study aimed to prolong the vase life of Dahlia flowers used as cut flowers. Deionized water (control), sucrose + deionized water, thyme oil, lavender oil, carvacrol, thymol, sodium hypochlorite, and gibberellic acid were used as vase solutions. The total vase solution uptake (g/stem), daily vase solution uptake (g/day fresh weight (FW)), proportional FW (%) and vase life (day) parameters were determined based on Dahlia flowers that harvested at different harvest stages (3, 4 and 5 layers). As a result; the most extended vase life was measured in the gibberellic acid treatment (8.22 days), the highest proportional fresh weight was measured in the carvacrol in the 6th day (139.78%), the highest daily solution uptake was measured in the thyme oil in 0-2 days (11.7 g/day FW) and the highest total solution uptake was measured in the thyme oil (27.5 g/stem). It was concluded that the vase life of earlier harvested flowers was longer than of late harvested.


Author(s):  
Haejo Yang ◽  
Sooyeon Lim ◽  
Ji Hyun Lee ◽  
Ji Weon Choi ◽  
Il Sheob Shin

Vase life is one of the most important factors that determine the marketability of cut flowers and is greatly affected by the water balance. In recent years, cut hydrangea flowers are increasingly consumed as decorations for various events. However, the vase life of cut hydrangea flowers varies greatly depending on the postharvest solution management. Therefore, this study investigated the vase life, solution uptake, water balance, and relative fresh weight of freshly harvested hydrangea (Hydrangea macrophylla ‘Verena’) according to the three types of holding solutions (tap water, 1% chrysal professional Ⅲ (CPⅢ), 2% sucrose + 250 mg/L 8-hydroxquinoline + 100 mg/L citric acid (SHQC)) and the combination solutions (pretreatment; tap water, 0.1% chrysal RVB (RVB), floralife quickdip (FQ), transport; tap water, CPⅢ, floralife clear (FC), preservatives; CPⅢ, FC) for each distribution stage (pretreatment-transport-consumer). In the preservative comparison experiment, compared with the control, CPⅢ treatment and SHQC treatment significantly increased the vase life in 2019 (0.7 days, 3.4 days) and 2020 (1.4 days, 3.1 days), respectively. In the comparative experiment by solution combination, the group (RVB, FQ) using the pretreatment significantly extended the vase life by 4.6 days and 5.9 days compared to the tap water treatment. It was also determined that the same treatment increased overall solution uptake, maintained water balance longer, and increased relative fresh weight. These results confirm the importance of holding solutions and pretreatments, suggesting that appropriate pretreatments and preservatives should be used to improve the marketability of cut hydrangea flowers.


HortScience ◽  
2021 ◽  
pp. 1-8
Author(s):  
Lingfang Kong ◽  
Fan Li ◽  
Ronghui Du ◽  
Huaiting Geng ◽  
Shifeng Li ◽  
...  

Luculia pinceana is a potential cut flower because of its long-term blooming inflorescences and charming fragrance. However, its narrow distribution area and unexplored wild status severely restrict its applications, thus leading to the scientific research of cut L. pinceana flowers. To our knowledge, there is no available published information about the postharvest fresh-keeping of L. pinceana. During this study, the cut flowers of L. pinceana were tested using nine preservatives with different concentrations of sucrose and 8-hydroxyquinoline (8-HQ) to evaluate the fresh-keeping effects. Through the investigation and analysis of vase life, bud opening and abortion rate, water balance, malonaldehyde (MDA) content, and peroxidase (POD) activity, we selected and identified the best vase solution for cut L. pinceana flowers. The results suggested that the preservative of 1% sucrose and 100 mg/L 8-HQ could significantly prolong the vase life of cut L. pinceana flower up to 9 days compared with water control. This solution positively affects flower bud blooming, delays flower senescence, improves the water balance, inhibits the MDA accumulation, and increases POD activity. Therefore, this preservative is suitable for the fresh-keeping of cut L. pinceana flowers. Our study is the first to report the effects of preservatives on cut L. pinceana flower. The results showed that the low-sugar-containing (1% sugar) preservatives can effectively improve the ornamental quality of fresh flowers and demonstrated that the postharvest fresh-keeping of L. pinceana requires low sugar and is insensitive to microorganisms.


Sign in / Sign up

Export Citation Format

Share Document