Possible Learned Detection of Exogenous Brain Frequency Electromagnetic Fields: A Case Study

1987 ◽  
Vol 65 (2) ◽  
pp. 444-446 ◽  
Author(s):  
M. A. Persinger ◽  
K. Makarec

Zener card representations were presented visually for 15 sec. every 30 sec. for a total of 40 trials per session over 17 sessions to a single subject who displayed temporal lobe lability. During the 15 sec. before the presentation of one of the symbols (target) either a specific 4-Hz magnetic field pattern or a 1-Hz or 7-Hz magnetic field was presented bilaterally at the level of the temporal lobes. Field strengths were in the order of milligauss (about 1000X background values). The subject was required to anticipate the next symbol for each trial. Only when the 4-Hz field preceded the target symbol did the subject's accuracy of guessing remain systematically above (50%) chance (20%) over the sessions. These results suggest that exogenous magnetic fields may become discriminative stimuli through temporal association. Evidence of habituation was also obtained.

1996 ◽  
Vol 26 (1) ◽  
pp. 191-195 ◽  
Author(s):  
W. G. Honer ◽  
A. S. Bassett ◽  
P. Falkai ◽  
T. G. Beach ◽  
J. S. Lapointe

SynopsisCase studies of patients with familial schizophrenia may help to define the pathophysiology of this illness and indicate potential candidate genes for genetic linkage studies. In this regard, the clinical, radiological and pathological assessments of a 39-year-old affected man from a pedigree with familial schizophrenia are presented. Brain imaging with CT indicated moderate cortical atrophy, particularly of the temporal lobes. Neuropathological examination revealed granular ependymitis, indicating possible past ventricular pathology. Granular ependymitis was reported to occur in genetic developmental disorders with neuronal migration abnormalities. In the present case, heterotopic clusters of neurons were visualized in the entorhinal cortex, suggesting that temporal lobe development was not entirely normal. This case study suggests that genetic factors could be investigated further as one possible aetiology of certain neurodevelopmental abnormalities observed in schizophrenia.


This year marks not only the twenty-fifth anniversary of the first manned landing on the Moon ( Apollo 11 ) but also the thirty-fifth anniversary of the first planetary missions. The latter was the Soviet Luna 1 and 2 carrying magnetometers to test whether the Moon possessed a global magnetic field. Luna 1 passed the Moon but Luna 2 crash landed, both showed that the Moon had no magnetic field as large as 50 or 100 y (1 y = 10 -5 G = 10 -9 T). Such an experiment had been proposed by S. Chapman ( Nature 160, 395 (1947)) to test a speculative hypothesis concerning magnetic fields of cosmic bodies by P. M. S. Blackett ( Nature 159, 658 (1947)). Chapman’s suggestion was greeted by general amusement: 12 years later it was accomplished. Also two years after the launch of Sputnik 1 in 1957, Luna 3 was launched and for the first time viewed the far side of the Moon on 9 October, 1959. Laboratories from many countries were invited by NASA to take part in the analysis of rocks returned from the Apollo missions and later from the Soviet automated return of cores from the lunar regolith. British laboratories were very active in this work, and a review of the results of the new understanding of the Moon as a result of space missions formed the subject of a Royal Society Discussion Meeting in 1975 (published in Phil. Trans. R. Soc. Lond . A 285). British laboratories received samples from the automated Soviet missions that took cores from the regolith and returned them to Earth. Work on Luna 16 and 20 samples were published in Phil. Trans. R. Soc. Lond . A 284 131-177 (1977) and on Luna 24 in Phil. Trans. R. Soc. Lond . A 297 1-50 (1979).


2020 ◽  
Author(s):  
Stas Barabash ◽  
Andrii Voshchepynets ◽  
Mats Holmström ◽  
Futaana Yoshifumi ◽  
Robin Ramstad

<p>Induced magnetospheres of non-magnetized atmospheric bodies like Mars and Venus are formed by magnetic fields of ionospheric currents induced by the convective electric field E = - V x B/c of the solar wind. The induced magnetic fields create a magnetic barrier which forms a void of the solar wind plasma, an induced magnetosphere. But what happens when the interplanetary magnetic field is mostly radial and the convective field E ≈ 0? Do a magnetic barrier and solar wind void form? If yes, how such a degenerate induced magnetosphere work? The question is directly related to the problem of the atmospheric escape due to the interaction with the solar and stellar winds. The radial interplanetary magnetic field in the inner solar system is typical for the ancient Sun conditions and exoplanets on near-star orbits. Also, the radial interplanetary field may provide stronger coupling of the near-planet environment with the solar/stellar winds and thus effectively channels the solar/stellar wind energy to the ionospheric ions. We review the current works on the subject, show examples of degenerate induced magnetospheres of Mars and Venus from Mars Express, Venus Express, and MAVEN measurements and hybrid simulations, discuss physics of degenerate induced magnetospheres, and impact of such configurations on the escape processes.</p>


2016 ◽  
Vol 699 ◽  
pp. 31-36 ◽  
Author(s):  
Eduard Chirila ◽  
Ionel Chirica ◽  
Doina Boazu ◽  
Elena Felicia Beznea

The paper addresses the study of the damping characteristics estimation and behaviour of the magnetorheological elastomers (MREs) in the absence of magnetic field. This type of material actively changes the size, internal structure and viscoelastic characteristics under the external influences. These particular composite materials whose characteristics can vary in the presence of a magnetic fields are known as smart materials. The feature which causes the variation of properties in magnetic fields is explained by the existence of polarized particles which change the material form by energy absorbing. Damping is a special characteristic that influences the vibratory of the mechanical system. As an effect of this property is the reducing of the vibration amplitudes by dissipating the energy stored during the vibratory moving. The main characteristic that is based on the determination of the damping coefficient is the energy loss, which is the subject of the present paper. Before to start the characteristics determination in the presence of the magnetic field, it is necessary to study these characteristics in the absence of magnetic field. The MRE specimens have been manufactured and tested under the light conditions (non magnetic field). A special experimental test rig was built to investigate the response of the MRE specimens under the charging force. The experimental results show that the loss energy of the MRE specimen can be determined from the charging-discharging curves versus displacement. The results of the MRE specimen are presented in this paper: MRE with feromagnetic particles not exposed in magnetic field during fabrication.


Author(s):  
Abraham Octavio RODRÍGUEZ-DE LA FUENTE ◽  
Ricardo GOMEZ-FLORES ◽  
José Antonio HEREDIA-ROJAS ◽  
Edna Marbella GARCÍA-MUÑOZ ◽  
Javier VARGAS-VILLARREAL ◽  
...  

Background: There is an increasing interest in using physical factors such as magnetic fields as antimicrobial strategy, with variable results. The current study was aimed to evaluate the influence of extremely low-frequency electromagnetic fields (ELF-EMFs) on the axenically-cultured parasite protozoans Trichomonas vaginalis and Giardia lamblia growth. Methods: Bioassays were developed using T. vaginalis, GT-13 and G. lamblia IMSS-0989 strains cultured at 37 ºC in TYI-S-33 medium. The following treatment regimens and controls were considered: (a) cells exposed to ELF-EMFs, (b) untreated cells, (c) cells treated with Metronidazole, used as positive controls, and (d) cells co-exposed to ELF-EMFs and Metronidazole. When cultures reached the end of logarithmic phase, they were exposed to ELF-EMFs for 72 h, in a standardized magnetic field exposure facility. For determining cytotoxic effects, trophozoite density was blindly evaluated in a Neubauer chamber. Results: A significant decrease in trophozoite growth was observed for T. vaginalis, in magnetic field-treated cultures. On the other hand, cultures co-exposed to ELF-EMFs and Metronidazole showed no significant differences when compared with cultures treated with Metronidazole alone. On the contrary, an increased trophozoite density was observed in G. lamblia cultures after exposure to magnetic fields. An absence of a synergistic or antagonistic effect was observed. Conclusion: ELF-EMFs induced T. vaginalis and G. lamblia growth alterations, indicating a potential effect in cell cycle progression.


Author(s):  
Malka N. Halgamuge ◽  
Chathurika D. Abeyrathne ◽  
Priyan Mendis

Electromagnetic fields (EMF) are essential to various applications directly involving humans. Fears about the biological effect of exposure to electromagnetic fields drive enormous research into this area. This research generates conflicting results, and consequently, uncertainty regarding possible health effects. This chapter studies a nonlinear Lorenz model describing interactions among charged particles and combined alternating (AC: alternating current) and static (DC: direct current) electromagnetic fields, for various combinations of frequencies, field strengths and relative angle (?) between the AC and DC magnetic fields. We investigate the effect on charged particles of three possible combinations of alternating and static electromagnetic fields: (i) AC electric field and DC magnetic field (ii) AC magnetic field and DC magnetic field (iii) AC electric field and AC and DC magnetic field. Then the behavior of the particle in these fields with different initial conditions and strong directional effects is observed when the angle between AC and DC magnetic fields is varied. The results show that the cyclotron resonance frequency is affected by charged particles’ initial position and initial velocity. Further, we observe strong effects of electric and magnetic fields on a charged particle in a biological cell with initial position and initial velocity.


2009 ◽  
Vol 99 (3) ◽  
pp. 247-250
Author(s):  
Nathan Norem ◽  
Catherine Feuerstein ◽  
Vincent Traverso ◽  
Nancy Zomaya ◽  
Ryan Crews ◽  
...  

Heelys shoes are a novel athletic shoe with a concealed wheel. They have been popular among youths since their introduction in 2000. This case study serves as a first look into the biomechanical implications of Heelys shoes on gait. Pressure readings of the forefoot, midfoot, and rearfoot during ambulation in regular athletic-shoe walking, Heelys without the wheel walking, Heelys with the wheel walking, and Heelys skating with the wheel were recorded on a single subject using the Pedar X System. A visual gait analysis was also performed on the subject. The resulting data show increased forefoot and rearfoot pressure while walking with the Heelys with the wheel. The visual gait analysis showed a diminished heel strike and a more rapid forefoot loading. These results demonstrate that Heelys do in fact affect the biomechanics of gait. (J Am Podiatr Med Assoc 99(3): 247–250, 2009)


2004 ◽  
Vol 218 ◽  
pp. 265-266
Author(s):  
Ya. N. Istomin

The electromagnetic fields of magnetodipole radiation can penetrate to the conducting matter of a neutron star crust and create there electric currents and tangential magnetic fields of high magnitude. The solution obtained here has the form of surface magnetic field discontinuities propagating through the crust to the core. This model explains the phenomena of magnetars — Soft Gamma-ray Repeaters and Anomalous X-ray Pulsars.


2007 ◽  
Vol 3 (S243) ◽  
pp. 63-70
Author(s):  
Rachel L. Curran ◽  
Antonio Chrysostomou ◽  
Brenda C. Matthews

AbstractSubmillimetre imaging polarimetry is one of the most powerful tools at present for studying magnetic fields in star-forming regions, and the only way to gain significant information on the structure of these fields. We present analysis of the largest sample (to date) of both high- and low-mass star-forming regions observed using this technique. A variety of magnetic field morphologies are observed, with no single field morphology favoured. Both the continuum emission morphologies and the field morphologies are generally more complex for the high-mass sample than the low-mass sample. The large scale magnetic field (observed with the JCMT; 14″ resolution) of NGC1333 IRAS2 is interpreted to be weak (compared to the energetic contributions due to turbulence) from the random field pattern observed. On smaller scales (observed with the BIMA array; 3″ resolution) the field is observed to be almost radial, consistent with the polarisation nulls in the JCMT data – suggesting that on smaller scales, the field may be more important to the star formation process. An analysis of the magnetic field direction and the jet/outflow axis is also discussed. Cumulative distribution functions of the difference between the mean position angle of the magnetic field vectors and the jet/outflow axis reveal no correlation. However, visual inspection of the maps reveal alignment of the magnetic field and jet/outflow axis in 7 out of 15 high-mass regions and 3 out of 8 low-mass regions.


Author(s):  
Alexander M. Gardner ◽  
Indira Seshadri ◽  
Ganpati Ramanath ◽  
Theodorian Borca-Tasciuc

Ferrofluids have been the subject of great interest in engineering because of their unique flow characteristics under magnetic fields (Rosensweig, 1987). However, there are limited experiments which show the potential of ferrofluids to undergo controlled changes in thermal conductivity (Philip et al., 2008) under magnetic fields. The purpose of this experiment is to investigate thermal transport in ferrofluids. A test apparatus was designed and the thermal resistance of a commercially available ferromagnetic fluid within a test cell was measured as a function of the applied magnetic field.


Sign in / Sign up

Export Citation Format

Share Document