Influence of Concurrent Tasks on Gait: A Dual-Task Approach

1995 ◽  
Vol 81 (1) ◽  
pp. 107-113 ◽  
Author(s):  
Georg Ebersbach ◽  
Milan R. Dimitrijevic ◽  
Werner Poewe

We studied the effect of concurrent tasks on motor control of gait with dual-task methodology. Ten healthy subjects were instructed to perform different cognitive and motor tasks during gait on a conductive walkway. Footswitch signals were recorded and stride time and double-support time were calculated. It was assumed that the former reflects gait-patterning mechanisms and the latter relates to balance control. Statistical analysis showed an increase in double-support time when a memory-retention task (digit-span) and a fine motor task (buttoning) were executed simultaneously during gait. During gait performance of the cognitive task declined compared to baseline conditions. Attentional demand of concurrent cognitive and motor tasks appeared to force subjects to modulate their gait strategy to ensure control of balance. Stride time was consistent across task conditions except when subjects performed fast finger-tapping during gait. Then all but one subject showed a decrease in stride time and an increase in stride-frequency that was repeatable on retest. Since different rhythmic movements are likely to share common neurobiological networks, we assumed that the modulation of stride-frequency was due to structural interference.

Gerontology ◽  
2021 ◽  
pp. 1-10
Author(s):  
Lay Khoon Lau ◽  
Jagadish Ullal Mallya ◽  
Wei Jun Benedict Pang ◽  
Kexun Kenneth Chen ◽  
Khalid bin Abdul Jabbar ◽  
...  

Background: Studies indicate that physiological and cognitive aging are causally related and functionally interdependent. However, the relative contribution of physiological factors and cognition to dual-task costs (DTC) of gait parameters has not been well studied. In this cross-sectional study, we examined the trajectory of DTC of gait parameters across the adult age spectrum for both sexes and identified the contributions of physical and cognitive performance to DTC of gait. Methods: A total of 492 community-dwelling adults, aged 21–90 years, were randomly recruited into the study. Participants were divided into 7 age groups, with 10-year age range for each group. Demographic data, height, body mass, education level, and information on comorbidities were recorded. Cognition was measured using the Repeatable Battery for the Assessment of Neuropsychological Status. Physical performance included visual contrast sensitivity, postural sway, hand reaction time, handgrip strength, knee extensor strength, and single-task and dual-task gait assessments. Stepwise multivariable regression was used to examine the association between physical and cognitive performance with DTC of gait parameters. Results: Women were found to have significantly higher DTC of gait speed (p = 0.01), cadence (p < 0.01), and double support time (p < 0.01) than men. However, significant aging effect on DTC of gait speed (p = 0.01), step length (p = 0.01), and double support time (p = 0.01) was observed in men but not in women. Immediate memory was the primary determinant for the DTC of gait speed (β = −0.25, p < 0.01), step length (β = −0.22, p < 0.01), and cadence (β = −0.15, p = 0.03) in men. Besides immediate memory, postural sway (β = −0.13, p = 0.03) and hand reaction (β = 0.14, p = 0.02) were also significantly associated with DTC of step length and cadence, respectively, in women. Conclusion: There were sex differences in the amplitude and trajectories of DTC of gait parameters. The DTC increased with age in men but not in women. Immediate memory was the primary determinant of DTC of gait parameters in men while immediate memory, postural sway, and reaction time were associated with DTC of gait in women. Future studies should investigate the clinical implications of the sex differences in the DTC with fall risks.


2019 ◽  
Vol 75 (8) ◽  
pp. 1516-1522 ◽  
Author(s):  
Azizah J Jor’dan ◽  
Brad Manor ◽  
Ikechukwu Iloputaife ◽  
Daniel A Habtemariam ◽  
Jonathan F Bean ◽  
...  

Abstract Background Walking, especially while dual-tasking, requires functional activation of cognitive brain regions and their connected neural networks. This study examined the relationship between neurovascular coupling (NVC), as measured by the change in cerebral blood flow in response to performing a cognitive executive task, and dual-task walking performance. Methods Seventy community-dwelling older adults aged 84 ± 5 years within the Maintenance of Balance, Independent Living, Intellect and Zest in the Elderly (MOBILIZE) Boston Study were divided into LOW (n = 35) and HIGH (n = 35) NVC. NVC was quantified by transcranial Doppler ultrasound and stratified by the median change in cerebral blood flow velocity of the middle cerebral artery induced by the performance of the n-back task of executive function. Walking metrics included walking speed, step width, stride length, stride time, stride time variability, and double-support time from single- and dual-task walking conditions, as well as the “cost” of dual-tasking. Results During both single- and dual-task walking, older adults with LOW NVC displayed narrower step width (p = .02 and p = .02), shorter stride length (p = .01 and p = .02), and longer double-support time (p = .03 and p = .002) when compared with the HIGH group. During single-task walking only, LOW NVC was also linked to slower walking speed (p = .02). These associations were independent of age, height, hypertension, atrial fibrillation, and assistive device. The LOW and HIGH NVC groups did not differ in dual-task costs to walking performance. Conclusion In older adults, diminished capacity to regulate cerebral blood flow in response to an executive function task is linked to worse walking performance under both single- and dual-task conditions, but not necessarily dual-task costs.


2021 ◽  
Vol 61 (1) ◽  
Author(s):  
Goran Radunović ◽  
Zoran Veličković ◽  
Melanija Rašić ◽  
Saša Janjić ◽  
Vladana Marković ◽  
...  

Abstract Background The aim of the study was to assess gait pattern of patients diagnosed with fibromyalgia (FM) while performing demanding motor and/or cognitive dual tasks while walking. Further, idea was to explore possible correlations of dual task gait pattern alterations to patients’ functional status and presence or absence of clinical symptoms associated with FM. Methods Twenty-four female FM patients and 24 healthy female subjects performed a basic walking task, a dual motor, a dual mental (cognitive) and a combined, dual motor and cognitive task simultaneously. Quantitative spatial (stride length) and temporal (cycle time, swing time and double support time) gait parameters were measured using GAITRite walkway system and their variability was assessed. Patients underwent clinical examination including assessment of functional status, pain and fatigue level, psychiatric and cognitive manifestations. Results The motor, cognitive and combined dual tasks affect gait performance in FM patients. Difference in tasks between FM and healthy subjects was found as double support time prolongation. Comparison of tasks showing that cycle time in FM was longer than controls and stride length was shorter in patients for all conditions, while no changes were found in any of the gait parameters variability. Further, mental/cognitive dual tasks had a larger effect than motor tasks. Correlations were also found between depression and functional status of the patients and the gait parameters. Conclusions Gait is affected in FM patients while dual task walking. No changes in stride-to-stride variability point that patients preserve stability in complex walking situations. Analysis of gait may provide additional information for the FM identification based on presence of clinical features and cognitive status. Correlation of dual task gait alterations with occurrence of clinical symptoms and influence of cognitive changes on gait pattern could additionally define FM subgroups.


2009 ◽  
Vol 23 (7) ◽  
pp. 735-744 ◽  
Author(s):  
Darcy S. Reisman ◽  
Robert Wityk ◽  
Kenneth Silver ◽  
Amy J. Bastian

Background and Objective. Following stroke, subjects retain the ability to adapt interlimb symmetry on the split-belt treadmill. Critical to advancing our understanding of locomotor adaptation and its usefulness in rehabilitation is discerning whether adaptive effects observed on a treadmill transfer to walking over ground. We examined whether aftereffects following split-belt treadmill adaptation transfer to overground walking in healthy persons and those poststroke. Methods. Eleven poststroke and 11 age-matched and gender-matched healthy subjects walked over ground before and after walking on a split-belt treadmill. Adaptation and aftereffects in step length and double support time were calculated. Results. Both groups demonstrated partial transfer of the aftereffects observed on the treadmill ( P < .001) to overground walking ( P < .05), but the transfer was more robust in the subjects poststroke ( P < .05). The subjects with baseline asymmetry after stroke improved in asymmetry of step length and double limb support ( P = .06). Conclusions. The partial transfer of aftereffects to overground walking suggests that some shared neural circuits that control locomotion for different environmental contexts are adapted during split-belt treadmill walking. The larger adaptation transfer from the treadmill to overground walking in the stroke survivors may be due to difficulty adjusting their walking pattern to changing environmental demands. Such difficulties with context switching have been considered detrimental to function poststroke. However, we propose that the persistence of improved symmetry when changing context to overground walking could be used to advantage in poststroke rehabilitation.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4224 ◽  
Author(s):  
Martín Martínez ◽  
Federico Villagra ◽  
Juan Castellote ◽  
María Pastor

The aim of this study is to compare the properties of free-walking at a natural pace between mild Parkinson’s disease (PD) patients during the ON-clinical status and two control groups. In-shoe pressure-sensitive insoles were used to quantify the temporal and force characteristics of a 5-min free-walking in 11 PD patients, in 16 young healthy controls, and in 12 age-matched healthy controls. Inferential statistics analyses were performed on the kinematic and kinetic parameters to compare groups’ performances, whereas feature selection analyses and automatic classification were used to identify the signature of parkinsonian gait and to assess the performance of group classification, respectively. Compared to healthy subjects, the PD patients’ gait pattern presented significant differences in kinematic parameters associated with bilateral coordination but not in kinetics. Specifically, patients showed an increased variability in double support time, greater gait asymmetry and phase deviation, and also poorer phase coordination. Feature selection analyses based on the ReliefF algorithm on the differential parameters in PD patients revealed an effect of the clinical status, especially true in double support time variability and gait asymmetry. Automatic classification of PD patients, young and senior subjects confirmed that kinematic predictors produced a slightly better classification performance than kinetic predictors. Overall, classification accuracy of groups with a linear discriminant model which included the whole set of features (i.e., demographics and parameters extracted from the sensors) was 64.1%.


2018 ◽  
Vol 42 (6) ◽  
pp. 626-635 ◽  
Author(s):  
James A Sturk ◽  
Edward D Lemaire ◽  
Emily Sinitski ◽  
Nancy L Dudek ◽  
Markus Besemann ◽  
...  

Background: A transfemoral amputee’s functional level can be classified from K-level 0 (lowest) to K-level 4 (highest). Knowledge of the biomechanical differences between K3 and K4 transfemoral amputation could help inform clinical professionals and researchers in amputee care and gait assessment. Objectives: Explore gait differences between K3- and K4-level transfemoral amputation across different surface conditions. Study design: Cross-sectional study. Methods: Four K3 and six K4 transfemoral amputation and 10 matched able-bodied individuals walked in a virtual environment with simulated level and non-level surfaces on a self-paced treadmill. Stability measures included medial-lateral margin of stability, step parameters, and gait variability (standard deviations for speed, temporal-spatial parameters, root-mean-square of medial-lateral trunk acceleration). Results: K3 walked slower than K4 with wider steps, greater root-mean-square of medial-lateral trunk acceleration, and greater medial-lateral margin of stability standard deviations, indicating their stability was further challenged. K3 participants had greater asymmetry in double support time and trunk acceleration root-mean-square in the medial-lateral direction, but similar asymmetry overall. K3 participants had larger differences from AB and in more parameters than K4, although K4 differed from AB in trunk acceleration root-mean-square in the medial-lateral direction, walking speed, and double support time standard deviations. Conclusion: The findings improve our understanding of K3 and K4 transfemoral amputation gait on slopes and simulated uneven surfaces. Clinical relevance High performing and community ambulatory transfemoral amputees cannot match the ambulatory abilities of ablebodied individuals. Understanding gait differences between these groups under conditions that challenge balance is required to develop rehabilitation protocols and prosthetic componentry targeted at improving transfemoral amputee gait and overall mobility in their chosen environment.


2016 ◽  
Vol 19 (1) ◽  
pp. 165-182 ◽  
Author(s):  
Gisele de Cássia Gomes ◽  
Luci Fuscaldi Teixeira-Salmela ◽  
Flávia Alexandra Silveira de Freitas ◽  
Maria Luísa Morais Fonseca ◽  
Marina de Barros Pinheiro ◽  
...  

Introduction The physiological deterioration associated with ageing exposes elderly persons to greater risks of falls, especially during the performance of simultaneous tasks during gait. Objectives To evaluate the effects of dual tasks (DT) on spatiotemporal gait parameters and to identify the tools and tasks most commonly used to assess the performance of DT among the elderly. Method Searches of the MEDLINE, PsycINFO, CINAHL, and SciELO databases were conducted. Observational studies, which evaluated gait changes during the performance of DT, published up to April 2014, were selected. Results A total of 385 articles were found, of which 28 were selected. Decreases in speed and increases in stride variability, stride time, step width, and double support time were observed under DT conditions. Motion analysis systems, such as the GAITRite walkway(r) system were the mostly commonly used instruments for the analyses of kinematic parameters (16 studies). DT was most commonly assessed by arithmetic calculations in 20 studies, followed by verbal fluency, in nine studies. The gait parameters most commonly assessed were speed (19 studies), followed by stride variability (14 studies). Conclusion The elderly showed changes in spatiotemporal gait parameters under DT conditions. Gait speed and stride variability were often assessed and, together, were considered good indicators of risks of falls.


1987 ◽  
Vol 2 (2) ◽  
pp. 68-70 ◽  
Author(s):  
S. Khodadadeh ◽  
M.R. McClelland ◽  
A.V. Nene ◽  
J.H. Patrick

2015 ◽  
Vol 40 (1) ◽  
pp. 89-95 ◽  
Author(s):  
Cynthia Kendell ◽  
Edward D Lemaire ◽  
Jonathan Kofman ◽  
Nancy Dudek

Background: For people with lower extremity amputations, the decreased confidence and suboptimal gait associated with dynamic instability can negatively affect mobility and quality of life. Quantifying dynamic instability could enhance clinical decision making related to lower extremity prosthetics and inform future prosthetic research. Objective: To quantitatively examine gait adaptations in transfemoral amputees across various walking conditions. Study design: Cross-sectional study. Methods: Plantar-pressure data were collected from 11 individuals with unilateral transfemoral amputations using an in-shoe plantar-pressure measurement system while navigating rigid and soft ground, ramp, and stair conditions. Six parameters were examined: anterior–posterior and medial–lateral center-of-pressure direction changes, sensor cell loading frequency (cell triggering), maximum lateral force position, double support time, and stride time. Paired t-tests and analyses of variance were used to examine differences between limbs and walking conditions, respectively. Results: Values for medial–lateral center-of-pressure direction change, sensor cell loading frequency, and double support time were significantly greater on the intact limb than the prosthetic limb. Significant differences between conditions occurred only for anterior–posterior center-of-pressure direction change and double support time on the prosthetic limb. Conclusion: Higher values on the intact limb suggest that it plays a key role in maintaining stability and optimizing body progression during different tasks. Differences between participants, limbs, and walking condition indicate parameter sensitivity to adaptive gait strategies. Clinical relevance This plantar-pressure-based approach is a viable option for point-of-care evaluation of locomotor performance, across common various mobility tasks and activities of daily living. The information obtained could be valuable for prosthetic prescription and optimization of prosthetic fit and alignment, potentially improving mobility for prosthetic users with dynamic stability deficits.


2021 ◽  
Vol 27 (6) ◽  
pp. 592-596
Author(s):  
Hyun-Seung Rhyu ◽  
Soung-Yob Rhi

ABSTRACT Although many studies have focused on balance exercises for elderly or stroke patients, no comprehensive studies have investigated the use of training on different surfaces (TDS) with analysis of gait performance in elderly male stroke patients. The active properties of balance and subjective reporting of functional gait ability were used to identify the effects of TDS. Static balance (SB), dynamic balance (DB) and gait analysis was measured in 30 elderly stroke patients. The patients were divided into the TDS group (n=15) and a control group (CG, n=15). Fifteen elderly stroke patients underwent TDS five times a week for 12 weeks. The data was analyzed using repeated measures analysis of variance. Significant differences were observed between the two groups (TDS and Control): SB (p < 0.0001), DB (OSI: p < 0.0001, APSI: p < 0.001, MLSI: p < 0.004) and gait analysis (right: temporal step time: p < 0.0001, temporal cycle time: p < 0.001, temporal double support time: p < 0.0001; left: temporal step time: p < 0.0001, temporal cycle time: p < 0.0001, temporal double support time: p < 0.0001). TDS in elderly male stroke patients suggests that the characteristics of gait performance in these patients may be improved by increasing static balance, dynamic balance and gait velocity. It is hoped that the results of this trial will provide new information on the effects of TDS on balance stability and gait ability in stroke patients, through changes in stability of the lower extremities. Level III, Case-control Study.


Sign in / Sign up

Export Citation Format

Share Document