scholarly journals Multidecadal Variability of the Upper Ocean Heat Content Anomaly Field in the North Pacific and its Relationship to the Aleutian Low and the Kuroshio Transport

2007 ◽  
Vol 58 ◽  
pp. 155-166 ◽  
Author(s):  
Takuya Hasegawa ◽  
Tamaki Yasuda ◽  
Kimio Hanawa
2017 ◽  
Vol 30 (16) ◽  
pp. 6247-6264 ◽  
Author(s):  
Bunmei Taguchi ◽  
Niklas Schneider ◽  
Masami Nonaka ◽  
Hideharu Sasaki

Generation and propagation processes of upper-ocean heat content (OHC) in the North Pacific are investigated using oceanic subsurface observations and an eddy-resolving ocean general circulation model hindcast simulation. OHC anomalies are decomposed into physically distinct dynamical components (OHC ρ) due to temperature anomalies that are associated with density anomalies and spiciness components (OHC χ) due to temperature anomalies that are density compensating with salinity. Analysis of the observational and model data consistently shows that both dynamical and spiciness components contribute to interannual–decadal OHC variability, with the former (latter) component dominating in the subtropical (subpolar) North Pacific. OHC ρ variability represents heaving of thermocline, propagates westward, and intensifies along the Kuroshio Extension, consistent with jet-trapped Rossby waves, while OHC χ variability propagates eastward along the subarctic frontal zone, suggesting advection by mean eastward currents. OHC χ variability tightly corresponds in space to horizontal mean spiciness gradients. Meanwhile, area-averaged OHC χ anomalies in the western subarctic frontal zone closely correspond in time to meridional shifts of the subarctic frontal zone. Regression coefficient of the OHC χ time series on the frontal displacement anomalies quantitatively agree with the area-averaged mean spiciness gradient in the region, and suggest that OHC χ is generated via frontal variability in the subarctic frontal zone.


2007 ◽  
Vol 20 (10) ◽  
pp. 2092-2108 ◽  
Author(s):  
Jordan T. Dawe ◽  
Lu Anne Thompson

Abstract Heat and temperature budget changes in a ⅓° model of the North Pacific driven by an idealized Pacific decadal oscillation (PDO) atmospheric forcing are diagnosed to determine the roles of atmospheric heat flux and ocean dynamics in upper-ocean heat content and mixed layer temperature (MLT) changes. Changes in MLT and heat content during the transition between negative and positive PDOs are driven primarily by atmospheric heat fluxes, with contributions from ageostrophic advection and entrainment. Once the new PDO state is established, atmospheric heat flux in the central North Pacific works to mitigate the MLT change while vertical entrainment and ageostrophic advection act to enhance it. Upper-ocean heat content is affected in a similar matter, except that vertical processes are not important in the heat budget balance. At the same time, changes in wind stress curl cause the subtropical gyre to spin up and the subpolar gyre boundary to migrate southward. These circulation changes cause a large increase in the geostrophic advective heat flux in the Kuroshio region. This increase results in more heat flux to the atmosphere, demonstrating an active role for ocean dynamics in the upper-ocean heat budget. Eddy heat flux divergence along the Kuroshio Extension doubles after the transition, due to stronger eddy activity related to increased Kuroshio transport.


2006 ◽  
Vol 62 (1) ◽  
pp. 25-35 ◽  
Author(s):  
Yoshinobu Wakata ◽  
Takashi Setou ◽  
Ikuo Kaneko ◽  
Hiroshi Uchida ◽  
Shiro Imawaki

2007 ◽  
Vol 20 (2) ◽  
pp. 173-186 ◽  
Author(s):  
Shusaku Sugimoto ◽  
Kimio Hanawa

Abstract Using long-term datasets of sea surface temperature (SST), core-layer temperature (CLT) of the North Pacific subtropical mode water (NPSTMW), and the North Pacific index, an impact of remote reemergence of NPSTMW on winter SST variation in the central North Pacific is quantitatively investigated. A running correlation analysis between CLT and winter SST in the remote reemergence area clearly shows that an occurrence of remote reemergence of NPSTMW strongly depends on the specific time period: occurrence period and nonoccurrence period. It is found that background conditions, such as formation rate of NPSTMW, winter mixed layer depth, ocean heat content, and buoyancy flux, play a crucial role in the period-dependent remote reemergence. In the occurrence (nonoccurrence) periods, since a large positive (negative) upper-ocean heat content anomaly is located around the central North Pacific, a deeper (shallower) winter mixed layer is formed in both the formation area and the reemergence area of NPSTMW. Therefore, a large (small) amount of NPSTMW is formed, and consequently the advective part of NPSTMW is preserved (dissipated) from (because of) a vigorous mixing due to salt-finger-type convection. In addition, larger (less) oceanic buoyancy loss contributes to an occurrence of reemergence. These are favorable (unfavorable) conditions for persistence of thermal anomalies and occurrence of reemergence in the central North Pacific. Using a multiple regression analysis, it is shown that remote reemergence gives a significant impact to an equivalent degree to the surface thermal forcing related with the Aleutian low activity on winter SST variation during the occurrence periods, while there is no significant contribution to SST variation during the nonoccurrence periods. It is also shown that the period-dependent reemergence closely connects with the Aleutian low activity with a lag of 6 to 8 yr, that is, the spinup/spindown of the subtropical gyre.


2014 ◽  
Vol 27 (8) ◽  
pp. 2842-2860 ◽  
Author(s):  
Luc Rainville ◽  
Steven R. Jayne ◽  
Meghan F. Cronin

Abstract Mooring measurements from the Kuroshio Extension System Study (June 2004–June 2006) and from the ongoing Kuroshio Extension Observatory (June 2004–present) are combined with float measurements of the Argo network to study the variability of the North Pacific Subtropical Mode Water (STMW) across the entire gyre, on time scales from days, to seasons, to a decade. The top of the STMW follows a seasonal cycle, although observations reveal that it primarily varies in discrete steps associated with episodic wind events. The variations of the STMW bottom depth are tightly related to the sea surface height (SSH), reflecting mesoscale eddies and large-scale variations of the Kuroshio Extension and recirculation gyre systems. Using the observed relationship between SSH and STMW, gridded SSH products and in situ estimates from floats are used to construct weekly maps of STMW thickness, providing nonbiased estimates of STMW total volume, annual formation and erosion volumes, and seasonal and interannual variability for the past decade. Year-to-year variations are detected, particularly a significant decrease of STMW volume in 2007–10 primarily attributable to a smaller volume formed. Variability of the heat content in the mode water region is dominated by the seasonal cycle and mesoscale eddies; there is only a weak link to STMW on interannual time scales, and no long-term trends in heat content and STMW thickness between 2002 and 2011 are detected. Weak lagged correlations among air–sea fluxes, oceanic heat content, and STMW thickness are found when averaged over the northwestern Pacific recirculation gyre region.


2009 ◽  
Vol 22 (12) ◽  
pp. 3177-3192 ◽  
Author(s):  
Terrence M. Joyce ◽  
Young-Oh Kwon ◽  
Lisan Yu

Abstract Coherent, large-scale shifts in the paths of the Gulf Stream (GS) and the Kuroshio Extension (KE) occur on interannual to decadal time scales. Attention has usually been drawn to causes for these shifts in the overlying atmosphere, with some built-in delay of up to a few years resulting from propagation of wind-forced variability within the ocean. However, these shifts in the latitudes of separated western boundary currents can cause substantial changes in SST, which may influence the synoptic atmospheric variability with little or no time delay. Various measures of wintertime atmospheric variability in the synoptic band (2–8 days) are examined using a relatively new dataset for air–sea exchange [Objectively Analyzed Air–Sea Fluxes (OAFlux)] and subsurface temperature indices of the Gulf Stream and Kuroshio path that are insulated from direct air–sea exchange, and therefore are preferable to SST. Significant changes are found in the atmospheric variability following changes in the paths of these currents, sometimes in a local fashion such as meridional shifts in measures of local storm tracks, and sometimes in nonlocal, broad regions coincident with and downstream of the oceanic forcing. Differences between the North Pacific (KE) and North Atlantic (GS) may be partly related to the more zonal orientation of the KE and the stronger SST signals of the GS, but could also be due to differences in mean storm-track characteristics over the North Pacific and North Atlantic.


2009 ◽  
Vol 39 (6) ◽  
pp. 1317-1339 ◽  
Author(s):  
Robert S. Pickart ◽  
Alison M. Macdonald ◽  
G. W. K. Moore ◽  
Ian A. Renfrew ◽  
John E. Walsh ◽  
...  

Abstract The seasonal change in the development of Aleutian low pressure systems from early fall to early winter is analyzed using a combination of meteorological reanalysis fields, satellite sea surface temperature (SST) data, and satellite wind data. The time period of the study is September–December 2002, although results are shown to be representative of the long-term climatology. Characteristics of the storms were documented as they progressed across the North Pacific, including their path, central pressure, deepening rate, and speed of translation. Clear patterns emerged. Storms tended to deepen in two distinct geographical locations—the Gulf of Alaska in early fall and the western North Pacific in late fall. In the Gulf of Alaska, a quasi-permanent “notch” in the SST distribution is argued to be of significance. The signature of the notch is imprinted in the atmosphere, resulting in a region of enhanced cyclonic potential vorticity in the lower troposphere that is conducive for storm development. Later in the season, as winter approaches and the Sea of Okhotsk becomes partially ice covered and cold, the air emanating from the Asian continent leads to enhanced baroclinicity in the region south of Kamchatka. This corresponds to enhanced storm cyclogenesis in that region. Consequently, there is a seasonal westward migration of the dominant lobe of the Aleutian low. The impact of the wind stress curl pattern resulting from these two regions of storm development on the oceanic circulation is investigated using historical hydrography. It is argued that the seasonal bimodal input of cyclonic vorticity from the wind may be partly responsible for the two distinct North Pacific subarctic gyres.


2007 ◽  
Vol 20 (8) ◽  
pp. 1523-1538 ◽  
Author(s):  
Xiaojie Zhu ◽  
Jilin Sun ◽  
Zhengyu Liu ◽  
Qinyu Liu ◽  
Jonathan E. Martin

Abstract An analysis of cyclone activity in winter associated with years of strong and weak Aleutian low in the North Pacific is presented. From 1958 to 2004, 10 winters with a strong Aleutian low are defined as the strong years, while 8 winters with a weak Aleutian low are defined as the weak years. Employing a system-centered Lagrangian method, some characteristics of the cyclone activity in both sets of years are revealed. The cyclone frequency, duration, and intensity are nearly the same in both strong and weak years. The cyclone tracks in the strong years are more zonal than those in the weak years. More intense cyclone events and more large cyclone cases occur in strong years than in weak years and the deepening of cyclones in strong years is stronger than that in weak years. The analyses of geopotential height, wind, stationary Rossby wavenumber, and Eady growth rate index at 500 or 300 hPa reveal that conditions are favorable for more zonal tracks and greater cyclone growth in strong years than in weak years. An estimation of the relative change of cyclone intensity and the relative change of Aleutian low intensity is made, which shows that the interannual change of cyclone intensity is about 73% of the interannual change of Aleutian low intensity. This result suggests that the evolution of individual cyclones may be a significant driver of changes in the Aleutian low.


Sign in / Sign up

Export Citation Format

Share Document