scholarly journals Upper-Bound Equation of Compressive Load-Carrying Capacity of RC Column Considering Characteristic of Material and Buckling of Primary Reinforcement

2001 ◽  
Vol 50 (6Appendix) ◽  
pp. 96-102
Author(s):  
Makoto SUDO ◽  
Tetsukazu KIDA ◽  
Kiyoshi KATO ◽  
Tadashi ABE ◽  
Ichiro KURODA ◽  
...  
Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 75
Author(s):  
Huynh-Xuan Tin ◽  
Ngo-Thanh Thuy ◽  
Soo-Yeon Seo

Various researches have been performed to find an effective confining method using FRP sheet in order to improve the structural capacity of reinforced concrete column. However, most of these researches were undertaken for the columns subjected to concentric compressive load or fully confined RC columns. To date, it remains hard to find studies on partially FRP-confined RC columns under eccentric load. In this manner, an experimental investigation was carried out to assess the performance of rectangular RC column with different patterns of CFRP-wrap subject to eccentric loads in this paper. The experiment consists of fourteen mid-scale rectangular RC columns of 200 mm × 200 mm × 800 mm, including five controlled columns and nine CFRP-strengthened ones. All CFRP-strengthened columns were reinforced with one layer of vertical CFRP sheet with the main fiber along the axial axis at four sides, then divided into three groups according to confinement purpose, namely unconfined, partially CFRP-confined, and fully CFRP-confined group. Two loading conditions, namely uniaxially and biaxially eccentric loads, are considered as one of the test parameters. From the test of uniaxial eccentric load, partial and full CFRP-wraps provided 19% and 33% increased load-carrying capacity at an eccentricity-to-column thickness ratio (e/h) of 0.125, respectively, compared to controlled columns, and 8% and 11% at e/h = 0.25, respectively. For the partially CFRP-confined columns subjected to biaxial eccentric load with e/h = 0.125 and 0.25, the load-carrying capacities were improved by 19% and 31%, respectively. This means that the partial confinement with CFRP effectively improves the load-carrying capacity at larger biaxial eccentric load. It was found that the load-carrying capacity could be properly predicted by using code equations of ACI 440.2R-17 and Fib Bulletin 14 Guideline for the full CFRP-confined or partially CFRP-confined columns under uniaxial load. For partially CFRP-confined columns under biaxial loading, however, the safety factors using the Fib calculation process were 20% to 31% lower than that of uniaxially loaded columns.


2013 ◽  
Vol 671-674 ◽  
pp. 1319-1323
Author(s):  
Zi Xue Lei ◽  
Yu Hang Han ◽  
San Sheng Dong ◽  
Jun Qing Guo

A centrally reinforced column is a new type of RC columns, formed by providing a reinforcement skeleton at the central part of the cross section of an ordinary RC column. Tests have shown that as compared with an ordinary RC column, this type of columns has a higher load carrying capacity and ductility. From the pushover analysis of a frame composed of ordinary RC columns and one consisting of centrally reinforced columns, their seismic performance under seismic load of 9-degree intensity was studied according to Chinese code, including target displacements, story-level displacements, interstory drifts, appearance and development of plastic hinges. The results indicate that although the dimensions of cross sections of columns in the frame with centrally reinforced columns are smaller than those of the ordinary frame, the former still has a higher overall load carrying capacity and seismic performance than the latter.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Anandakumar Ramaswamy ◽  
Selvamony Chachithanantham ◽  
Seeni Arumugam

This paper deals with the behaviour of basalt fibre reinforced polymer (BFRP) composites retrofitted RCC piles subjected to axial compression loads. Currently the awareness of using FRP increases rapidly in engineering fields and also among public. Retrofitting becomes vital for aged and damaged concrete structures, piles, and so forth, to improve its load carrying capacity and to extend the service life. The load carrying capacity of piles retrofitted with basalt unidirectional fabric was studied experimentally. 15 nos. of RCC end bearing pile elements were cast with same reinforcement for axial compression experiment. Three piles were used as conventional elements, another 3 piles were used as double BFRP wrapped pile elements, and remaining 9 piles were used as retrofitted piles with BFRP double wrapping after preloaded to 30%, 60%, and 90% of ultimate load of conventional element. The effects of retrofitting of RCC pile elements were observed and a mathematical prediction was developed for calculation of retrofitting strength. The stress vs. strain relationship curve, load vs. deformation curve, preloaded elements strength losses are tabulated and plotted. Besides, crack patterns of conventional elements and tearing BFRP wrapped elements were also observed. The BFRP wrapped elements and retrofitted elements withstand more axial compressive load than the conventional elements.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2956
Author(s):  
Hubert Debski ◽  
Sylwester Samborski ◽  
Patryk Rozylo ◽  
Pawel Wysmulski

This study investigates the effect of eccentric compressive load on the stability, critical states and load-carrying capacity of thin-walled composite Z-profiles. Short thin-walled columns made of carbon fiber-reinforced plastic composite material fabricated by the autoclave technique are examined. In experimental tests, the thin-walled structures were compressed until a loss of their load-carrying capacity was obtained. The test parameters were measured to describe the structure’s behavior, including the phenomenon of composite material failure. The post-critical load-displacement equilibrium paths and the acoustic emission signal enabling analysis of the composite material condition during the loading process were measured. The scope of the study also included performing numerical simulations by finite element method to solve the problem of non-linear stability and to describe the phenomenon of composite material damage based on the progressive failure model. The obtained numerical results showed a good agreement with the experimental characteristics of real structures. The numerical results are compared with the experimental findings to validate the developed numerical model.


1994 ◽  
Vol 21 (3) ◽  
pp. 396-403 ◽  
Author(s):  
Murray C. Temple ◽  
Sherief S. S. Sakla

Angles used as web members in trusses are often welded to the chords with unbalanced welds. This is necessary because of space limitations. It is not known what effect such a weld has on the compressive load carrying capacity of an angle. The standards and specification examined allow an unbalanced weld for an angle. The justification for using such a weld is based on research conducted on angles in tension. For these members, it was concluded that an unbalanced weld does not affect the tensile load carrying capacity of the angle. Research results for angles with different weld patterns subjected to compressive loads are not available in the literature. Eighteen tests were conducted on angle compression members with various weld patterns. It was determined that an unbalanced weld is detrimental to the load carrying capacity of an intermediate length angle but is beneficial for a slender angle. Key words: angles, column (structural), compressive resistance, effective length, standards, welds.


1986 ◽  
Vol 10 (3) ◽  
pp. 149-152 ◽  
Author(s):  
A. M. Brown ◽  
M. J. Pearcy

The chairbound, disabled person requires a supportive cushion to distribute pressure in order to reduce the risk of pressure sores and any alteration to the load carrying capacity of the cushion may have a deleterious effect on its ability to provide adequate support. The National Health Service supplies two basic grades of polyurethane foam for wheelchair cushions and this study investigated the effect of water content on their compressive load carrying capacity. Both foams became less stiff and exhibited greater than 20% increase in deformation when containing 20% water by volume at loads encountered in seating. This decrease in stiffness may result in a dramatic change in the pressure distribution under a patient particularly if only a small section of the cushion becomes wet. This result emphasizes the need to fit waterproof coverings to these foam cushions and to maintain the integrity of the covering.


1999 ◽  
Vol 122 (2) ◽  
pp. 198-203
Author(s):  
H. F. Chen ◽  
D. W. Shu

A simplified numerical method for both lower and upper-bound limit analyses of 3-D structure has been developed in our previous work. The load-carrying capacities of 3-D pipelines with either one or two part-through defects of various geometrical configurations were calculated by the proposed method. In the present paper, the effects of the distance between two defects on the load-carrying capacity of pressure vessels are evaluated and discussed in details. Using curve-fitting schemes, an empirical formula for obtaining the load-carrying capacity of pressure vessels with double defects from that of pressure vessels with a single defect are proposed. Some engineering suggestions are presented simultaneously. All the numerical results confirm the applicability of the simplified numerical method. [S0094-9930(00)00102-5]


Sign in / Sign up

Export Citation Format

Share Document