scholarly journals Performance of BFRP Retrofitted RCC Piles Subjected to Axial Loads

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Anandakumar Ramaswamy ◽  
Selvamony Chachithanantham ◽  
Seeni Arumugam

This paper deals with the behaviour of basalt fibre reinforced polymer (BFRP) composites retrofitted RCC piles subjected to axial compression loads. Currently the awareness of using FRP increases rapidly in engineering fields and also among public. Retrofitting becomes vital for aged and damaged concrete structures, piles, and so forth, to improve its load carrying capacity and to extend the service life. The load carrying capacity of piles retrofitted with basalt unidirectional fabric was studied experimentally. 15 nos. of RCC end bearing pile elements were cast with same reinforcement for axial compression experiment. Three piles were used as conventional elements, another 3 piles were used as double BFRP wrapped pile elements, and remaining 9 piles were used as retrofitted piles with BFRP double wrapping after preloaded to 30%, 60%, and 90% of ultimate load of conventional element. The effects of retrofitting of RCC pile elements were observed and a mathematical prediction was developed for calculation of retrofitting strength. The stress vs. strain relationship curve, load vs. deformation curve, preloaded elements strength losses are tabulated and plotted. Besides, crack patterns of conventional elements and tearing BFRP wrapped elements were also observed. The BFRP wrapped elements and retrofitted elements withstand more axial compressive load than the conventional elements.

1994 ◽  
Vol 61 (4) ◽  
pp. 998-1000 ◽  
Author(s):  
M. Savoia ◽  
J. N. Reddy

The post-buckling of stiffened, cross-ply laminated, circular determine the effects of shell lamination scheme and stiffeners on the reduced load-carrying capacity. The effect of geometric imperfection is also included. The analysis is based on the layerwise shell theory of Reddy, and the “smeared stiffener” technique is used to account for the stiffener stiffness. Nu cylinders under uniform axial compression is investigated to merical results for stiffened and unstiffened cylinders are presented, showing that imperfection-sensitivity is strictly related to the number of nearly simultaneous buckling modes.


2013 ◽  
Vol 671-674 ◽  
pp. 697-703 ◽  
Author(s):  
Xin Ming Cao ◽  
Xian Wu Huang ◽  
Zhi Gang Mo ◽  
Hong Yuan Tian

Based on the research of normal confined concrete (NCC), regional confined concrete (RCC) was proposed years ago by authors. With the introduction of regional confinement concept, different mechanical properties, failure mode and energy dispatching property developed in the regional confined concrete elements. Experimental researches have been carried out during the past years on the elements under various loads, including beams under moments, short beams under shears, short columns under axial loads, middle long columns under eccentric loads, middle long columns under axial loads and columns under cycling loads. Experimental results indicated that RCC elements are more ductile, have better load carrying capacity and larger energy dispatch capacity than that of NCC elements. Stress-strain relationship of RCC, integrated confinement factor and some computation expressions for elements under various loads are proposed. Pilot projects have been conducted and regional confined concrete structures are ready for service.


2021 ◽  
Vol 309 ◽  
pp. 01049
Author(s):  
K Ajay Kumar ◽  
A Venkat Sai Krishna ◽  
S Shrihari ◽  
V Srinivasa Reddy

In the present study, the stress-stain behaviour of confined concrete made with basalt fibre reinforced polymer bars (BFRP) were taken up. The stress-strain behaviour was studied for the concrete mixes confined with steel rebars and BFRP rebars. The confinement was given in the form of steel hoops in the cylinders, 3 hoops (0.8%), 4 hoops (1.1%), 5 hoops (1.3%) and 6 hoops (1.6%). The addition of basalt fibres along with confinement of concrete with steel and BFRP hoops enhanced the compressive strength, indicating further confinement effect in the concrete. It is observed that the addition of fibres is helpful in lower confinements only. Beyond 1.1% confinement, the addition of any type of basalt fibres doesn’t show any effect on compressive strengths. From the stress-strain behaviour of all types of concrete mixes, it is concluded that the ultimate load-carrying capacity and strains at peak stresses are more in concrete with BFRP hoops for mixes up to 1.1% confinement. The addition of basalt fibres to concrete has increased the ductility in both confined and unconfined states


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2956
Author(s):  
Hubert Debski ◽  
Sylwester Samborski ◽  
Patryk Rozylo ◽  
Pawel Wysmulski

This study investigates the effect of eccentric compressive load on the stability, critical states and load-carrying capacity of thin-walled composite Z-profiles. Short thin-walled columns made of carbon fiber-reinforced plastic composite material fabricated by the autoclave technique are examined. In experimental tests, the thin-walled structures were compressed until a loss of their load-carrying capacity was obtained. The test parameters were measured to describe the structure’s behavior, including the phenomenon of composite material failure. The post-critical load-displacement equilibrium paths and the acoustic emission signal enabling analysis of the composite material condition during the loading process were measured. The scope of the study also included performing numerical simulations by finite element method to solve the problem of non-linear stability and to describe the phenomenon of composite material damage based on the progressive failure model. The obtained numerical results showed a good agreement with the experimental characteristics of real structures. The numerical results are compared with the experimental findings to validate the developed numerical model.


Sign in / Sign up

Export Citation Format

Share Document