scholarly journals Heavy Metal and Bacterial Pollution of the Sava River in Serbia

2011 ◽  
Vol 62 (1) ◽  
pp. 11-16 ◽  
Author(s):  
Živorad Vuković ◽  
Ljiljana Marković ◽  
Mirjana Radenković ◽  
Dubravka Vuković ◽  
Srboljub Stanković

Heavy Metal and Bacterial Pollution of the Sava River in Serbia The aim of this study was to establish microbial and heavy metal pollution of the Sava River at three locations close to industry and urban areas (Šabac, Obrenovac, Beograd) in Serbia. Heavy metal analysis included Cu, Zn, Pb, and Cd in the river water and sediment samples. Using the microbiological analysis we tried to establish the effectiveness of total coliforms, faecal coliforms and Escherichia coli in detecting pollution of surface waters. We found that E. coli levels steadily increased downstream from Šabac (location 1; 2100 MPN per 100 mL) to Belgrade (location 3; 10000 MPN per 100 mL). To prevent bacterial contamination, it is necessary to reduce the discharge of wastewater with faecal matters near highly populated towns. Heavy metal levels in sediments correlated with those in the river water. Fluctuations attributed mainly to anthropogenic sources were not high. These results point to acceptable anthropogenic contribution to heavy metal content in the Sava River and to low environmental risk.

2014 ◽  
Vol 79 (3) ◽  
pp. 379-387 ◽  
Author(s):  
Dubravka Vukovic ◽  
Srboljub Stankovic ◽  
Zivorad Vukovic ◽  
Ksenija Jankovic

Selected heavy metals (Cu, Zn, Pb and Cd) in Sava River water and sediment in Serbia were investigated on three locations in the vicinity of industrial and urban settlements (Sabac, Obrenovac, Beograd) during the period spring 2007-autumn 2011. The fluxes of heavy metals from river water to sediment due to sedimentation and heavy metal re-suspension fluxes due to sediment re-suspension at a high flow were determined, by applying the model for assessment of the transport the pollutants through rivers. Those fluxes were attributed mainly to natural processes.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1394 ◽  
Author(s):  
Marsha Putri ◽  
Chao-Hsun Lou ◽  
Mat Syai’in ◽  
Shang-Hsin Ou ◽  
Yu-Chun Wang

The application of multivariate statistical techniques including cluster analysis and principal component analysis-multiple linear regression (PCA-MLR) was successfully used to classify the river pollution level in Taiwan and identify possible pollution sources. Water quality and heavy metal monitoring data from the Taiwan Environmental Protection Administration (EPA) was evaluated for 14 major rivers in four regions of Taiwan with the Erren River classified as the most polluted river in the country. Biochemical oxygen demand (6.1 ± 2.38), ammonia (3.48 ± 3.23), and total phosphate (0.65 ± 0.38) mg/L concentration in this river was the highest of the 14 rivers evaluated. In addition, heavy metal levels in the following rivers exceeded the Taiwan EPA standard limit (lead: 0.01, copper: 0.03, and manganese: 0.03) mg/L concentration: lead-in the Dongshan (0.02 ± 0.09), Jhuoshuei (0.03 ± 0.03), and Xinhuwei Rivers (0.02 ± 0.02) mg/L; copper: in the Dahan (0.036 ± 0.097), Laojie (0.06 ± 1.77), and Erren Rivers are (0.05 ± 0.158) mg/L; manganese: in all rivers. A total 72% of the water pollution in the Erren River was estimated to originate from industrial sources, 16% from domestic black water, and 12% from natural sources and runoff from other tributaries. Our research demonstrated that applying PCA-MLR and cluster analysis on long-term monitoring water quality would provide integrated information for river water pollution management and future policy making.


2019 ◽  
Vol 98 ◽  
pp. 12017
Author(s):  
Jelena Parlov ◽  
Zoran Kovač ◽  
Jadranka Barešić

Water stable isotopes were used to investigate hydrological pathways and interactions between surface water and groundwater in the Zagreb aquifer system (Croatia). δ2H and δ18O values indicate a spatial variability of the influence of individual groundwater sources inside the aquifer – local precipitation and the Sava River water. Fractions of surface water in groundwater strongly depend on fluctuations of the river water level and less on the distance from the Sava River. These data extend our understanding of groundwater flow in the Zagreb aquifer system, interactions between Sava River water, local precipitation and groundwater. The results of the research allow more precise monitoring plans and definition of the sanitary protection zones of the well fields in the future.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Rukumesh Paudyal ◽  
Shichang Kang ◽  
Chhatra Mani Sharma ◽  
Lekhendra Tripathee ◽  
Mika Sillanpää

During post-monsoon 2013, surface water samples were collected form 34 sites from the Bagmati River and its tributaries within the Kathmandu Valley to assess the river water quality. The physical parameters were measured on site and major ions (Na+,NH4+, K+, Mg2+, Ca2+, Cl−,SO42-, andNO3-) and 17 elements in water were analyzed in the laboratory. Conductivity ranged from 21.92 to 846 μS/cm, while turbidity ranged from 2.52 to 223 NTU and dissolved oxygen (DO) ranged from 0.04 to 8.98 mg/L. The ionic and elemental concentrations were higher in the lower section where the population density is high compared to the headwaters. The large input of wastewater and organic load created anoxic condition by consuming dissolved oxygen along the lower belt of the river. The concentration of the elements was found to be in the order of Mn > Zn > Ti > Rb > Cr > Cu > Sc > Ni > V > Li > Co > Mo > Cd > Y > Ga > Be > Nb. The concentration of Mn, Cd, Cr, Co, and Zn was particularly higher in urban and semiurban sections. Enrichment factor (EF) calculations for Cd, Co, and Zn showed their highly enriched values indicating that these elements originated from anthropogenic sources. Preliminary risk assessments were determined by the hazard quotient (HQ) calculations in order to evaluate the health risk of the metals. TheHQingestionvalues of elements were found to be in the order Sb > Mn > Cr > V > Co > Cd > Cu > Zn > Ni > Li > Mo with all averaged HQ values less than 1, indicating no or limited health risk of metals from the river to the local residence. However the values of Sb in some parts of the Bagmati were close to unity indicating its possible threat. Anthropogenic activities like industrial activities, municipal waste water, and road construction besides the river appear to control the chemical constituent of the river water. Overall the river was highly polluted with elevated concentrations of major ions and elements and there is a need for restoration projects.


2018 ◽  
Vol 16 (6) ◽  
pp. 991-1006
Author(s):  
Ana Barbosa-Vasconcelos ◽  
Ângelo Mendes ◽  
Flávia Martins ◽  
Elisabete Lopes ◽  
Ana Machado ◽  
...  

Abstract The Ave River in northern Portugal has a history of riverbanks and water quality degradation. The river water quality was assessed by physicochemical, biological (macroinvertebrates) and microbiological (Enterococcus spp. and Escherichia coli) parameters in six locations (A–F, point A being the nearest to the source) throughout its course during a year. Epilithic biofilms were studied through polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). Antimicrobial susceptibility testing helped with selecting isolates (n = 149 E. coli and n = 86 enterococci) for further genetic characterization. Pursuant to physicochemical and macroinvertebrates-based parameters, the river water was of reasonable quality according to European legislation (Directive 2000/60/EC). However, the microbiological analysis showed increased fecal contamination downstream from point C. At point D, four carbapenem-resistant E. coli isolates were recovered. Paradoxically, point D was classified as a point of ‘Good Water Quality’ according to macroinvertebrates results. Point F presented the highest contamination level and incidence of multidrug-resistant (MDR) isolates in the water column (13 MDR enterococci out of 39 and 33 MDR E. coli out of 97). Epilithic biofilms showed higher diversity in pristine points (A and B). Thus, biological and microbiological parameters used to assess the water quality led to divergent results; an outcome that reinforces the need for a holistic evaluation.


Author(s):  
Zrinka Dragun ◽  
Vlatka Filipović Marijić ◽  
Marijana Vuković ◽  
Biserka Raspor

Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1140
Author(s):  
Katarzyna Sutkowska ◽  
Leslaw Teper ◽  
Tomasz Czech ◽  
Tomasz Hulok ◽  
Michał Olszak ◽  
...  

Pollution indices are used to assess the influence of the bedrock as a natural source of heavy-metal (HM), and anthropogenic pollution from ore mining in soils developed from ore-bearing carbonates. The research was conducted in two areas differing in geological setting and type of land use in the Upper Silesia Industrial Region, Southern Poland. Physical properties such as pH, total sulfur, total carbon and total organic carbon values, as well as total Zn, Pb, and Cd contents (ICP-OES) for 39 topsoil samples were measured. Contamination factor (Cf), degree of contamination (Cdeg), pollution load index (PLI) and geoaccumulation index (Igeo), were used to determine the deterioration of topsoil due to HM pollution. The HM content exceeded geochemical background levels by 2.5–18.1 times. Very high to moderate topsoil contamination was determined. In a shallow historical mining zone, the relative influence of particular HM was found to be in the order of Pb > Cd > Zn and, in a deep mining zone, Zn > Cd > Pb. In the topsoil developed over shallow ore bodies, the HM content was mainly (60%) due to naturally occurring HM. In the area of deeply buried ore bodies, 90% of the HM load was related to anthropogenic sources. Zn, Pb and Cd vertical distributions and the patterns of topsoil pollution differ in terms of types of mined ores, mining methods and times elapsed since mining ceased. Pollution indices are an efficient tool for distinguishing soil anthropogenic pollution and geogenic contamination.


1995 ◽  
Vol 30 (1) ◽  
pp. 39-44
Author(s):  
Chye-Eng Seng ◽  
Poh-Eng Lim ◽  
Poh-Kim Chong ◽  
Lee-Mai Wong

Abstract The concentrations of zinc, copper, lead and nickel in the Penang River and its tributaries were determined to assess the extent of heavy metal pollution, and to evaluate which compartment provides a better indicator for heavy metal pollution. The results indicate that the concentrations of total and non-residual heavy metals in sediments increase significantly towards the estuary of the river. This trend is, however, not obvious for heavy metals in the river water. The data indicate that assessment of heavy metal pollution in rivers could be made by using the data of heavy metal levels in river sediments. It is suggested that non-residual heavy metal levels in sediments give the best indication of anthropogenic input of heavy metals to river systems.


2008 ◽  
Vol 42 (8-9) ◽  
pp. 2146-2156 ◽  
Author(s):  
Torsten Källqvist ◽  
Radmila Milačič ◽  
Tvrtko Smital ◽  
Kevin V. Thomas ◽  
Sanja Vranes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document