scholarly journals Tests of Residual Shear Transfer Strength of Concrete Exposed to Fire

2018 ◽  
Vol 64 (2) ◽  
pp. 187-199
Author(s):  
Muhaned A. Shallal ◽  
Aqil Mousa K. Al Musawi

AbstractReinforced concrete is one of the most widely used structural components about which much scientific research has been conducted; however, some of its characteristics still require further research. The main focus of this study is the effect of direct fire on the shear transfer strength of concrete. It was investigated under several parameters including concrete strength, number of stirrup legs (the steel area across the shear plane), and fire duration. The experimental program involved the testing of two sets (groups) of specimens (12 specimens each) with different concrete strengths. Each set contained specimens of two or four stirrup legs exposed to direct fire from one side (the fire was in an open area to simulate a real-life event) for a duration of one, two, and three hours. The results of the comparison showed the importance of using high-performance concrete (instead of increasing the number of stirrup legs) to resist shear stress for the purpose of safety. A significant reduction in shear strength occurred due to the deterioration of the concrete cover after three hours of direct fire exposure.

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4102
Author(s):  
Jan Stindt ◽  
Patrick Forman ◽  
Peter Mark

Resource-efficient precast concrete elements can be produced using high-performance concrete (HPC). A heat treatment accelerates hardening and thus enables early stripping. To minimise damages to the concrete structure, treatment time and temperature are regulated. This leads to temperature treatment times of more than 24 h, what seems too long for quick serial production (flow production) of HPC. To overcome this shortcoming and to accelerate production speed, the heat treatment is started here immediately after concreting. This in turn influences the shrinkage behaviour and the concrete strength. Therefore, shrinkage is investigated on prisms made from HPC with and without steel fibres, as well as on short beams with reinforcement ratios of 1.8% and 3.1%. Furthermore, the flexural and compressive strengths of the prisms are measured directly after heating and later on after 28 d. The specimens are heat-treated between 1 and 24 h at 80 °C and a relative humidity of 60%. Specimens without heating serve for reference. The results show that the shrinkage strain is pronouncedly reduced with increasing temperature duration and rebar ratio. Moreover, the compressive and flexural strength decrease with decreasing temperature duration, whereby the loss of strength can be compensated by adding steel fibres.


2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940054 ◽  
Author(s):  
Rongrong Yin ◽  
Jie Hu ◽  
Yu Liu ◽  
Qing Wu ◽  
Chenchen Zhang ◽  
...  

The thickness of corroded concrete layer and the compressive strength of prisms under the action of sulfate and chloride salt were investigated by ultrasonic test and compression test, respectively. The results show that under the single action of sulfate, the strength of concrete experienced two stages: a slow growth stage and a rapid descent stage. Correspondingly, under the combined action of sulfate and chloride, the concrete strength experienced another two stages: a slow growth stage and a slow degradation stage. The existence of chloride inhibited the corrosion damage of concrete in a certain extent. It was found that higher concentration of chlorine salt would lead to a stronger inhibition effect. A good consistency was observed among corrosion layer thickness, compressive strength and X-ray diffraction results. The inhabitation of chloride to the sulfate corrosion of concrete was proved.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sarmad Shafeeq Abdulqader ◽  
Asmaa Ali Ahmed ◽  
Nawfal Shihab Ahmed

Abstract Concrete Technology has been developing for more than a century. One of the most exceptional achievements in concrete technology is the evolving of Ultra-High Performance Concrete (UHPC) which has been a research focus in a wide applications diversity. In this paper, an experimental work has been carried out for investigating the transverse and longitudinal reinforcements’ variation influence on the axial capacity of UHPC columns. Eight columns (five UHPC columns and three Normal Strength Concrete (NSC) columns) have been poured and tested under a concentric axial compression load till a failure is reached. Then, the results are reported herein. The experimental results show that UHPC columns failed in a controlled manner and no concrete chips or a concrete cover spalling are observed. Also, the longitudinal reinforcements have not buckled away beyond the peak load because of the presence of the reinforcing steel fibers in UHPC. Correspondingly, the steel ties spacing proportionally affects the load carrying capacity of columns as presented hereinafter.


2012 ◽  
Vol 610-613 ◽  
pp. 573-576
Author(s):  
Zheng Jun Wang ◽  
Jia Bin Liang

This paper discusses the development of water-reducing agent and the present situation of the application of high performance concrete. The traditional concrete will be substituted by high performance concrete, green concrete. In the course of appearance of high performance and green, concrete admixtures plays an extremely important role. Concrete water-reducing agent is admixture of the main part. In the case of keeping liquidity, it can make water consumption reduce, so the concrete strength and durability can be improved. It is applicable to all kinds of industrial and civil construction engineering, and it can be applied to different strength grade of concrete. It has important significance for mass concrete engineering, marine building facilities, and component and product of high strength lightweight concrete.


2019 ◽  
Vol 292 ◽  
pp. 108-113 ◽  
Author(s):  
Josef Fládr ◽  
Petr Bílý ◽  
Roman Chylík ◽  
Zdeněk Prošek

The paper describes an experimental program focused on the research of high performance concrete with partial replacement of cement by fly ash. Four mixtures were investigated: reference mixture and mixtures with 10 %, 20 % and 30 % cement weight replaced by fly ash. In the first stage, the effect of cement replacement was observed. The second phase aimed at the influence of homogenization process for the selected 30% replacement on concrete properties. The analysis of macroscopic properties followed compressive strength, elastic modulus and depth of penetration of water under pressure. Microscopic analysis concentrated on the study of elastic modulus, porosity and mineralogical composition of cement matrix using scanning electron microscopy, spectral analysis and nanoindentation. The macroscopic results showed that the replacement of cement by fly ash notably improved compressive strength of concrete and significantly decreased the depth of penetration of water under pressure, while the improvement rate increased with increasing cement replacement (strength improved by 18 %, depth of penetration by 95 % at 30% replacement). Static elastic modulus was practically unaffected. Microscopic investigation showed impact of fly ash on both structure and phase mechanical performance of the material.


Author(s):  
Van-Thuc Ngo ◽  
Tien-Thanh Bui ◽  
Thanh-Quang-Khai Lam ◽  
Thi-Thu-Nga Nguyen ◽  
Van-Hau Nguyen

2011 ◽  
Vol 243-249 ◽  
pp. 1145-1155
Author(s):  
Jian Yang ◽  
Zhi Fang ◽  
Gong Lian Dai

Ultra High Performance Concrete (UHPC), which has very special properties that are remarkably different to the properties of normal and high performance concrete, is being increasingly used for the construction of structure. In this paper, an experimental program was formulated to investigate the characteristics of complete stress-strain curve of UHPC in uniaxial compression and flexural behaviors of prestressed UHPC beams. The particular focus was the influence of the partial prestress ratio and jacking stress on the flexural response of UHPC beams. The results show that UHPC is of good deformability, and a general form of the serpentine curve is proposed to represent the complete stress-strain relationship of UHPC in compression. The tests of beams demonstrated that the UHPC beams have an excellent behavior in load carrying capacity, crack distribution and deformability, their ultimate deflection can reach 1/34~1/70 of the span. Based on this investigation, theoretical correlations for the prediction structure response of UHPC beam are proposed.


2011 ◽  
Vol 284-286 ◽  
pp. 984-988
Author(s):  
An Shun Cheng ◽  
Yue Lin Huang ◽  
Chung Ho Huang ◽  
Tsong Yen

The study aims to research the effect of the particle size of fly ash on the compressive strength and fracture toughness of high performance concrete (HPC). In all HPC mixtures, the water-to-binder ratio selected is 0.35; the cement replacement ratios includes 0%, 10% and 20%; the particle sizes of fly ash have three types of passing through sieves No. 175, No. 250 and No. 325. Three-point-bending test was adopted to measure the load-deflection relations and the maximum loads to determine the fracture energy (GF) and the critical stress intensity factor (KSIC). Test results show that adding fly ash in HPC apparently enhances the late age strengths of HPC either for replacement ratio of 10% or 20%, in which the concrete with 10% fly ash shows the higher effect. In addition, the smaller the particle size is the better the late age concrete strength will be. The HPC with the finer fly ash can have higher strength development and the values of GF and KSIC due to the facts of better filling effect and pozzolanic reaction. At late age, the GF and KSIC values of concrete with 10% fly ash are all higher than those with 20% fly ash.


Sign in / Sign up

Export Citation Format

Share Document