scholarly journals A new RP-HPLC method as an auxiliary tool for optimization of sample preparation procedures for tracing of PPCPs of different hydrophilicities

2021 ◽  
Vol 71 (2) ◽  
pp. 305-315
Author(s):  
Omar J. Portillo-Castillo ◽  
Rocío Castro-Ríos ◽  
Abelardo Chávez-Montes ◽  
Azucena González-Horta ◽  
Norma Cavazos-Rocha ◽  
...  

AbstractRecently, pharmaceutical and personal care products (PPCPs) have received considerable attention because of their increasing use. Analysis of PPCPs presents a significant analytical challenge, with high-performance liquid chromatography (HPLC) in reversed-phase mode, as the most widely used analytical technique. To facilitate the optimization of the procedures that are applied in the early stages of sample preparation, a simple and fast HPLC method is proposed in this work for the separation of some PPCPs with a wide range of hydrophilicity. Two columns were evaluated (Atlantis dC18 and Discovery HS F5); as for mobile phases: a formate buffer (40 mmol L−1, pH 4) and methanol were tested in a gradient mode. The fluorinated column allowed better separation in a shorter time and better resolution for all analytes (Rs > 1). The proposed method delivered good performance for the tracing of PPCPs and is a suitable alternative to traditional C18-based HPLC methods.

2021 ◽  
Vol 10 (5) ◽  
pp. 3591-3596
Author(s):  
Manisha P. Puranik

The current analytical exploration illustrated developing a reversed-phase high-performance liquid chromatography (RP-HPLC) technique and consequent substantiation for analyzing lamotrigine (LAM) active pharmaceutical ingredient (API) using a Quality-by-design (QbD) approach (Central Composite Design), in bulk product as well as in the tablet formulations. In this experiment, based on systematic scouting, four key components (viz., mobile phase, column, flow-rate, and wavelength) were studied by the RP-HPLC method. 13 experimental runs were done with acetonitrile (ACN) (40-60% v/v) having flow-rate in the range 0.8 mL/min to 1.2 mL/min. The proposed analytical method was thoroughly corroborated in terms of ruggedness linearity, robustness, accuracy, and precision in accordance with ICH guideline Q2A and ICH guideline Q2B. Under the optimum chromatographic environment; Intersil C8 column of 250 mm length, 4.6 mm (i.d.); 20 μL injection volume; and mobile phase ACN: Methanol (60:40 v/v), a retention time of 2.542 min was noticed at 220 nm detection wavelength. The method was found to be extremely reproducible, accurate, linear, precise, robust, and economically adequate to execute the estimation. The intended analytical technique was thoroughly assessed through statistical tools and could be an imperative concern for the habitual scrutiny of LAM in bulk products and its formulation.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Amol S. Jagdale ◽  
Nilesh S. Pendbhaje ◽  
Rupali V. Nirmal ◽  
Poonam M. Bachhav ◽  
Dayandeo B. Sumbre

Abstract Background A new, sensitive, suitable, clear, accurate, and robust reversed-phase high-performance liquid chromatography (RP-HPLC) method for the determination of brexpiprazole in bulk drug and tablet formulation was developed and validated in this research. Surface methodology was used to optimize the data, with a three-level Box-Behnken design. Methanol concentration in the mobile phase, flow rate, and pH were chosen as the three variables. The separation was performed using an HPLC method with a UV detector and Openlab EZchrom program, as well as a Water spherisorb C18 column (100 mm × 4.6; 5m). Acetonitrile was pumped at a flow rate of 1.0 mL/min with a 10 mM phosphate buffer balanced to a pH of 2.50.05 by diluted OPA (65:35% v/v) and detected at 216 nm. Result The developed RP-HPLC method yielded a suitable retention time for brexpiprazole of 4.22 min, which was optimized using the Design Expert-12 software. The linearity of the established method was verified with a correlation coefficient (r2) of 0.999 over the concentration range of 5.05–75.75 g/mL. For API and formulation, the percent assay was 99.46% and 100.91%, respectively. The percentage RSD for the method’s precision was found to be less than 2.0%. The percentage recoveries were discovered to be between 99.38 and 101.07%. 0.64 μg/mL and 1.95 μg/mL were found to be the LOD and LOQ, respectively. Conclusion The developed and validated RP-HPLC system takes less time and can be used in the industry for routine quality control/analysis of bulk drug and marketed brexpiprazole products. Graphical abstract


Author(s):  
PULAGURTHA BHASKARARAO ◽  
GOWRI SANKAR DANNANA

Objective: Noscof tablet is a fixed dosage combination formulation having diphenhydramine (DH), ephedrine (ED), noscapine (NP), and glycerol glycolate (GG). A sensitive, selective, accurate, precise, and stability-indicating reversed-phase high-performance liquid chromatography (RP-HPLC) method with photodiode array detection has been developed and validated for simultaneous analysis of DH, ED, NP, and GG in bulk drug and Noscof tablets. Methods: Reversed-phase chromatographic separation and analysis of DH, ED, NP, and GG were done on an Altima C18 column with 0.01 M KH2PO4 buffer (pH 3.5) and acetonitrile (50:50%, v/v) as mobile phase at 0.8 ml/min flow rate in isocratic mode. Detection was performed at 260 nm. The method was validated in harmony with International Conference on Harmonization (ICH) guidelines. The tablet sample solution was subjected to diverse stress conditions using ICH strategy such as hydrolytic degradation (neutral - with distilled water, alkaline - with 2 N NaOH, and acidic - with 2 N HCl), oxidation (with 10% H2O2), photodegradation (exposing to UV light), and dry heat degradation (exposing to 105°C). Results: Using the above stated chromatographic conditions, sharp peaks were obtained for ED, NP, DH, and GG with retention time of 3.272 min, 4.098 min, 5.467 min, and 6.783 min, respectively. Good regression coefficient values were obtained in the range of 2–12 μg/ml for ED, 3.75–22.5 μg/ml for NP, 3.125–18.75 μg/ml for DH, and 25–150 μg/ml for GG. The quantification limits were 0.181 μg/ml, 0.187 μg/ml, 0.246 μg/ml, and 1.114 μg/ml for ED, NP, DH, and GG, respectively. The values of validation parameters are within the acceptance limits given by ICH. The ED, NP, DH, and GG showed more percent of degradation in acid condition and less percent of degradation in the neutral condition. The peaks of degradants did not interfere with the peaks of analytes. ED, NP, DH, and GG were assessed with a good percentage of the assay (near to 100%) and low percent relative standard deviation (<2%) in Noscof tablets using the proposed method. Conclusion: The stability indicating RP-HPLC method developed was suitable for quantifying ED, NP, DH, and GG simultaneously in bulk as well as in tablet formulation.


2008 ◽  
Vol 91 (5) ◽  
pp. 1070-1074 ◽  
Author(s):  
Arun M Prajapati ◽  
Satish A Patel ◽  
Natvarlal J Patel ◽  
Dipti B Patel ◽  
Sejal K Patel

Abstract This research paper describes validated reversed-phase high-performance column liquid chromatographic (RP-HPLC) and first-derivative UV spectrophotometric methods for the estimation of voriconazole (VOR) in oral suspension powder. The RP-HPLC separation was achieved on Phenomenex C18 column (250 4.6 mm id, 5 m particle size) using wateracetonitrile (40 + 60, v/v; pH adjusted to 4.5 0.02 with acetic acid) as the mobile phase at a flow rate of 1.4 mL/min and ambient temperature. Quantification was achieved with photodiode array detection at 255 nm over the concentration range of 0.11 g/mL with mean recovery of 99.49 0.83 for VOR by the RP-HPLC method. Quantification was achieved with UV detection at 266 nm over the concentration range of 820 g/mL with mean recovery of 99.74 0.664 for VOR by the first-derivative UV spectrophotometric method. These methods are simple, precise, and sensitive, and they are applicable for the determination of VOR in oral suspension powder.


2020 ◽  
Vol 58 (9) ◽  
pp. 789-795
Author(s):  
Amira M El-Kosasy ◽  
Lobna A Hussein ◽  
Nesma M Mohamed ◽  
Nahla N Salama

Abstract A simple, precise, rapid and accurate reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated for analysis of safinamide mesylate (SAF) in presence of its basic degradate, and co-administered drugs levodopa and ondansetron. The mobile phase consisted of acetonitrile and 20 mM potassium dihyrogen orthophosphate buffer having pH = 5 (40: 60 v/v). Quantification was achieved with ultraviolet detector at 226 nm. The linear range was 0.5–10 μg/mL with mean recovery ± SD of 99.72 ± 1.59. The peak purity of SAF in pharmaceutical preparation spiked with its degradate and co-administered drugs revealed symmetry factor (999.8) within the calculated threshold (&gt;998.1). The suggested method was validated in compliance with the International Conference on Harmonization (ICH) guidelines and statistically compared with the manufacturer HPLC method with no significant difference in terms of accuracy and precision. The assay method was successfully used to estimate SAF in tablets with good percentage recoveries. The high sensitivity (lower than Cmax of the drug 0.65 μg/mL) of the proposed HPLC method enabled the determination of SAF in presence of its basic degradate and co-administered drug, ondansetron in human plasma with acceptable accuracy. The suggested HPLC method could be used in Quality Control (QC) lab for analysis of the studied drug in pharmaceutical preparation.


2017 ◽  
Vol 15 (2) ◽  
pp. 187-194 ◽  
Author(s):  
Md Shahadat Hossain ◽  
Md Samiul Islam ◽  
Subrata Bhadra ◽  
Abu Shara Shamsur Rouf

Highly nutritious dairy products are ingested regularly by all ages of population. Adulteration of dairy products to enhance the inherent stability and acceptability to common consumers by different harmful and toxic ingredients like formalin, an unpermitted preservative, has been a burning issue in Bangladesh over the last few years. The aim of this paper was to analyze the concentration of formaldehyde in dairy products most commonly sold in Bangladeshi markets by a validated reversed phase high performance liquid chromatographic (RP-HPLC) method to reveal the on-going alarming scenario in a scientific way. After pre-derivatization with 2,4- dinitrophenylhydrazine, formaldehyde was detected at 345 nm using a C18 column with acetonitrile and water (45:55) as mobile phase at a flow rate of 2.0ml/min. The validated method has been applied to 41 marketed dairy products, including pasteurized milk, UHT milk, banana- mango- and chocolate-milk, flavored yoghurt, lassi, buttermilk, and skimmed milk. However, no formaldehyde was detected among the tested dairy products.Dhaka Univ. J. Pharm. Sci. 15(2): 187-194, 2016 (December)


Author(s):  
Bijithra Cholaraja ◽  
Shanmugasundaram P ◽  
Ragan G ◽  
Sankar Ask ◽  
Sumithra M

ABSTRACTObjective: To development and validation of a reversed-phase high-performance liquid chromatography (RP-HPLC) for the determination of modafinilin bulk and pharmaceutical dosage forms.Methods: A simple, precise, rapid, and accurate RP-HPLC method was developed for the estimation of modafinil in bulk and pharmaceutical dosageforms. Xterra RP 18 (250 mm × 4.6 mm, 5 µ particle size) with a mobile phase consisting of methanol:water 70:30 V/V was used. The flow rate1.0 ml/min and the effluents were monitored at 260 nm. The retention time and recovery time was 12 minutes. The detector response was linear inthe concentration of 10-50 µg/ml. The respective linear regression equation being Y=452.1x+65237. The limit of detection and limit of quantificationwere 4.547 and 1.377 mcg, respectively. The method was validated by determining its accuracy, precision, and system suitability.Result: The objective of the present work is to develop simple, precise, and reliable HPLC method for the analysis of modafinil in bulk andpharmaceutical dosage forms. This is achieved using the most commonly employed Xterra RP 18 (250 mm × 4.6 mm, 5 μ particle size) columndetection at 260 nm. The present method was validated according to ICH guidelines.Conclusion: In this study, a simple, fast and reliable HPLC method was developed and validated for the determination of modafinil in pharmaceuticalformulations.Keywords: Modafinil, Reversed-phase high-performance liquid chromatography, Estimation, ICH guidelines, Tablets. 


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Mohammad F. Hossain ◽  
Mamoon Rashid ◽  
Rajjit Sidhu ◽  
Randy Mullins ◽  
Susan L. Mayhew

Mushrooms have been used as part of the average diet and as a nutraceutical for thousands of years due to their immense health benefits. The purpose of this study was to develop a simple, fast, accurate, specific, reproducible, and robust chromatographic method to identify and quantify two water-soluble vitamins: thiamine (B1) and riboflavin (B2) in mushrooms. The method employed for qualitative and quantitative analysis of these vitamins was Reversed Phase-High Performance Liquid Chromatography (RP-HPLC) equipped with Ultraviolet–Visible (UV-Vis) Detector. The extraction process involved acid hydrolysis followed by enzymatic dephosphorylation with takadiastase enzyme. Chromatographic separation was achieved with a Shimadzu prominence HPLC system using isocratic elution mode on a Waters Xterra® MS C-18 column (4.6mm × 150mm, 5 μm) integrated with a XBridge® BEH C-18 Guard column (2.1mm × 5 mm, 5 μm). The mobile phase of this study consisted of buffer and methanol in the ratio of 80:20, where the buffer contained sodium-1-hexanesulfonate, glacial acetic acid, methanol, and pH adjusted to 3.0 with diethylamine. Vitamins were detected simultaneously at their lambda max wavelengths B1: 245nm and B2: 268nm using dual-wavelength UV detection technique to get their highest response. The proposed method was found to be specific, linear R>1.0, accurate, precise (% recovery ± SD; B1:104.45±4.5 and B2: 104.88±2.04), sensitive, (limit of detection for B1 and B2 was 0.043 and 0.029 μg/mL, respectively), and robust for mushrooms analysis. No coeluting peaks were observed at the retention time of the vitamins and all the peaks were spectrally homogenous. The standard and sample solutions were found to remain stable at cold temperature for 72 hours. In summary, our data suggest that the proposed method could be used in food industries to monitor the product quality during routine quality control purposes.


1970 ◽  
Vol 3 (1) ◽  
pp. 49-53 ◽  
Author(s):  
Gaurav Patel ◽  
Sanjay Patel ◽  
Dhamesh Prajapiti ◽  
Rajendra Mehta

A reverse phase high performance liquid chromatographic (RP-HPLC) method has been developed for the simultaneous estimation of Amlodipine Besylate and Hydrochlorothiazide in combine dosage form. Amlodipine Besylate (AML) is a long acting calcium channel blocker and in the treatment of CVS disorder. Hydrochlorothiazide (HCT) is a diuretic and antihypertensive. The mobile phase used was a combination of Water: Methanol (70:30). The detection of the combined dosage form was carried out at 245nm and a flow rate employd was 0.5ml/min. The retention time for Amlodipine Besylate and Hydrochlorothiazide was found to be 6.95 and 2.65 min respectively. Linearity was obtained in the concentration range of 6 to 18μg/ml of Amlodipine Besylate and 6 to 18μg/ml of Hydrochlorothiazide with a correlation coefficient of 0.997 and 0.9974. Detector consists of photodiode array detector; the reversed phase column used was RP-C18 (5 μm size, 250mm, 4.6mm i.d.) at ambient temperature. The developed method was validated according to ICH guidelines and values of accuracy, precision and other statistical analysis were found to be in good accordance with the prescribed values. Thus the proposed method is precise, selective and rapid for simultaneous estimation of Amlodipine Besylate and Hydrochlorothiazide in routine analysis. Key Words: Simultaneous Estimation; Amlodipine Besylate; Hydrochlorothiazide; HPLC. DOI: 10.3329/sjps.v3i1.6798S. J. Pharm. Sci. 3(1): 49-53


Sign in / Sign up

Export Citation Format

Share Document