scholarly journals Synthesis, crystal structure, infrared spectrum, and thermal properties of [Ni(1,10-phenanthroline)3](fumarate)·9H2O complex with hydrogen bonded supramolecular layers involving fumarate anions

2019 ◽  
Vol 12 (1) ◽  
pp. 56-62
Author(s):  
Anna Uhrinová ◽  
Juraj Černák

Abstract From the aqueous-ethanolic system Ni(OH)2—H2fum—phen (H2fum = fumaric acid, phen = 1,10-phenanthroline), novel complex [Ni(phen)3](fum)·9H2O (1) was isolated and characterized by chemical analyses and FT-IR spectroscopy. Results of single crystal X-ray structure analysis have shown that the ionic crystal structure of 1 is built of [Ni(phen)3]2+ complex cations, fumarate dianions and nine crystallographically independent water molecules of crystallization. The Ni(II) atom exhibits hexa-coordination by three phen ligands with mean Ni-N bond length of 2.090 Å. Water molecules form hydrophilic supramolecular layers with fumarate dianions via extended network of O—H···O type hydrogen bonds with O···O distances from the range of 2.676(2)—2. 916(2) Å; hydrophobic complex cations are embedded between these layers. Thermal study of 1 has shown that endothermic dehydration in the temperature range of 95—195 °C takes at least two steps of the process. Graphical Abstract Crystal structure of [Ni(phen)3]fum·9H2O (phen = 1,10-phenanthroline; H2fum = fumaric acid) which is built of supramolecular layers formed by hydrogen bonded water solvate molecules and fum dianions and between the supramolecular layers embedded [Ni(phen)3]2+ complex cations is described here.

2012 ◽  
Vol 68 (8) ◽  
pp. o2357-o2357 ◽  
Author(s):  
María-Guadalupe Hernández Linares ◽  
Sylvain Bernès ◽  
Marcos Flores-Alamo ◽  
Gabriel Guerrero-Luna ◽  
Anselmo A. Martínez-Gallegos

Diosgenin [or (22R,25R)-spirost-5-en-3β-ol] is the starting material of the Marker degradation, a cheap semi-synthesis of progesterone, which has been designated as an International Historic Chemical Landmark. Thus far, a single X-ray structure for diosgenin is known, namely its dimethyl sulfoxide solvate [Zhanget al.(2005).Acta Cryst.E61, o2324–o2325]. We have now determined the structure of the hemihydrate, C27H42O3·0.5H2O. The asymmetric unit contains two diosgenin molecules, with quite similar conformations, and one water molecule. Hydroxy groups in steroids and water molecules form O—H...O hydrogen-bondedR54(10) ring motifs. Fused edge-sharingR(10) rings form a backbone oriented along [100], which aggregates the diosgenin molecules in the crystal structure.


Author(s):  
Nehemiah Harris ◽  
Jubilee Benedict ◽  
Diane A. Dickie ◽  
Silvina Pagola

Quinine (an antimalarial) and aspirin (a nonsteroidal anti-inflammatory drug) were combined into a new drug–drug salt, quininium aspirinate, C20H25N2O2 +·C9H7O4 −, by liquid-assisted grinding using stoichiometric amounts of the reactants in a 1:1 molar ratio, and water, EtOH, toluene, or heptane as additives. A tetrahydrofuran (THF) solution of the mechanochemical product prepared using EtOH as additive led to a single crystal of the same material obtained by mechanochemistry, which was used for crystal structure determination at 100 K. Powder X-ray diffraction ruled out crystallographic phase transitions in the 100–295 K interval. Neat mechanical treatment (in a mortar and pestle, or in a ball mill at 20 or 30 Hz milling frequencies) gave rise to an amorphous phase, as shown by powder X-ray diffraction; however, FT–IR spectroscopy unambiguously indicates that a mechanochemical reaction has occurred. Neat milling the reactants at 10 and 15 Hz led to incomplete reactions. Thermogravimetry and differential scanning calorimetry indicate that the amorphous and crystalline mechanochemical products form glasses/supercooled liquids before melting, and do not recrystallize upon cooling. However, the amorphous material obtained by neat grinding crystallizes upon storage into the salt reported. The mechanochemical synthesis, crystal structure analysis, Hirshfeld surfaces, powder X-ray diffraction, thermogravimetry, differential scanning calorimetry, FT–IR spectroscopy, and aqueous solubility of quininium aspirinate are herein reported.


1997 ◽  
Vol 53 (2) ◽  
pp. 252-261 ◽  
Author(s):  
Q. Li ◽  
T. C. W. Mak

New inclusion complexes tetra-n-butylammonium hydrogen oxalate–thiourea (1/2), (n-C4H9)4N+.HC2O4 −.2[(NH2)2CS] (1), tetramethylammonium hydrogen fumarate–thiourea (1/1), (CH3)4N+.HC4H2O4 −.(NH2)2CS (2), di(tetraethylammonium) fumarate–thiourea (1/2), [(C2H5)4N+]2.C4H2O4 2−.2[(NH2)2CS] (3) and tetra-n-propylammonium hydrogen fumarate–thiourea–water (1/1/2), (n-C3H7)4N+.HC4H2 O4 −.(NH2)2CS.2H2O (4) have been prepared and characterized by X-ray crystallography. Crystal data, Mo Kα radiation: (1), space group P21/n, a = 8.854 (6), b = 9.992 (3), c = 32.04 (2) Å, β = 97.34 (3), Z = 4, R F = 0.055 for 2261 observed data; (2), space group P\overline 1, a = 6.269 (2), b = 8.118 (4), c = 14.562 (8) Å, α = 104.79 (4), β= 91.72 (4), γ = 101.30 (4)°, Z = 2, R F = 0.078 for 1543 observed data; (3), space group P21/n, a = 11.340 (2), b = 9.293 (6), c = 14.619 (2) Å, β = 102.41 (2)°, Z = 2, R F = 0.050 for 1856 observed data; (4), space group P2/n, a = 16.866 (4), b = 8.311  (1), c = 17.603 (2) Å, β = 104.94 (1)°, Z = 4, R F = 0.048 for 2785 observed data. In the crystal structure of (1) the tetra-n-butylammonium ions are sandwiched between puckered layers, which are constructed from thiourea-hydrogen oxalate ribbons. In the crystal structure of (2), zigzag O--H...O and C--H...O hydrogen-bonded hydrogen fumarate ribbons are linked by thiourea dimers to form a wide puckered ribbon and the crystal structure is built of a packing of these thiourea–anion composite ribbons and the cationic columns. In the layer-type crystal structure of (3) a series of thiourea–fumarate layers match the (002) planes and the (C2H5)4N+ cations occupy the intervening space. In the crystal structure of (4) the thiourea, hydrogen fumarate ions and water molecules are connected by hydrogen bonds to form wide puckered ribbons, which are crosslinked to generate a three-dimensional host framework containing open channels aligned parallel to the a axis, with the tetra-n-propylammonium cations accommodated in a single column within each channel.


2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
Khalil Azzaoui ◽  
Rachid Essehli ◽  
El Miloud Mejdoubi ◽  
Brahim El Bali ◽  
Michal Dusek ◽  
...  

Two new dodecahydrate trisodium triphosphates Na3MP3O10·12H2O (M = Co (1), Ni (2)) were synthesized using a wet chemistry route and characterized by X-ray diffraction and FT-IR spectroscopy. They are isotypic, monoclinic (P21/n, Z=2), with pseudoorthorhombic unit cell parameters (Ǻ,°): (a=14,9906 (4), b=9,1628 (2), c=14,6660 (4), β=90,098 (2), for (1) and a=15,0236 (3), b=9,1972 (2), c=14,6654 (3), β=90,0492 (16) for (2)). Values of R/Rw are 0.0267/0.0738 and 0.0284/0.0907, respectively, for (1) and (2). Both compounds were found to be systematically twinned by 180° rotation around a. Their frameworks are made by slabs parallel to ab plane, resulting from the cohesion of two kinds of metallic chains. IR spectrum confirms the presence of characteristic bands from P3O10 phosphate group.


1988 ◽  
Vol 41 (4) ◽  
pp. 419 ◽  
Author(s):  
AD Rae ◽  
CG Ramsay ◽  
PJ Steel

The title compounds are shown to exist in solution and in the solid state as 4H-tautomers. X-Ray crystal structure determinations show that 1,3-diphenyl-1,2,4-triazol-5-one exists as a dimeric pair of strongly hydrogen-bonded molecules and that 3-phenyl-1-(2-pyridyl)-1,2,4- triazol-5-one exists as the 4H-tautomer stabilized by a complex network of hydrogen bonding to water molecules.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1786
Author(s):  
Carla Queirós ◽  
Chen Sun ◽  
Ana M. G. Silva ◽  
Baltazar de Castro ◽  
Juan Cabanillas-Gonzalez ◽  
...  

The development of straightforward reproducible methods for the preparation of new photoluminescent coordination polymers (CPs) is an important goal in luminescence and chemical sensing fields. Isophthalic acid derivatives have been reported for a wide range of applications, and in addition to their relatively low cost, have encouraged its use in the preparation of novel lanthanide-based coordination polymers (LnCPs). Considering that the photoluminescent properties of these CPs are highly dependent on the existence of water molecules in the crystal structure, our research efforts are now focused on the preparation of CP with the lowest water content possible, while considering a green chemistry approach. One- and two-dimensional (1D and 2D) LnCPs were prepared from 5-aminoisophthalic acid and Sm3+/Tb3+ using hydrothermal and/or microwave-assisted synthesis. The unprecedented LnCPs were characterized by single-crystal X-ray diffraction (SCRXD), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), and their photoluminescence (PL) properties were studied in the solid state, at room temperature, using the CPs as powders and encapsulated in poly(methyl methacrylate (PMMA) films, envisaging the potential preparation of devices for sensing. The materials revealed interesting PL properties that depend on the dimensionality, metal ion, co-ligand used and water content.


2020 ◽  
Vol 18 (1) ◽  
pp. 399-411
Author(s):  
Eman Alzahrani

AbstractA unique method was used to synthesize extremely stable silver stearate nanoparticles (AgStNPs) incorporated in an organic-based monolith. The facile strategy was then used to selectively isolate hemeproteins, myoglobin (Myo) and hemoglobin (Hb). Ethyl alcohol, silver nitrate, and stearic acid were, respectively, utilized as reducing agents, silver precursors, and capping agents. The color changed to cloudy from transparent, indicating that AgStNPs had been formed. AgStNP nanostructures were then distinctly integrated into the natural polymeric scaffold. To characterize the AgStNP–methacrylate polymeric monolith and the silver nanoparticles, energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), and Fourier-transform infrared (FT-IR) spectroscopy were used. The results of the SEM analysis indicated that the AgStNP–methacrylate polymeric monolith’s texture was so rough in comparison with that of the methacrylate polymeric monolith, indicating that the extraction process of the monolith materials would be more efficient because of the extended surface area of the absorbent. The comparison between the FT-IR spectra of AgStNPs, the bare organic monolith, and AgStNP–methacrylate polymeric monolith confirms that the AgStNPs were immobilized on the surface of the organic monolith. The EDX profile of the built materials indicated an advanced peak of the Ag sequence which represented an Ag atom of 3.27%. The results therefore established that the AgStNPs had been successfully integrated into the monolithic materials. Extraction efficiencies of 92% and 97% were used to, respectively, recover preconcentrated Myo and Hb. An uncomplicated method is a unique approach of both fabrication and utilization of the nanosorbent to selectively isolate hemeproteins. The process can further be implemented by using other noble metals.


2018 ◽  
Vol 74 (3) ◽  
pp. 366-371 ◽  
Author(s):  
Wen Cui ◽  
Ruyu Wang ◽  
Xi Shu ◽  
Yu Fan ◽  
Yang Liu ◽  
...  

The interaction between the uranyl cation, (UO2)2+, and organic species is of interest due to the potential applications of the resulting compounds with regard to nuclear waste disposal and nuclear fuel reprocessing. The hydrothermal reaction of various uranyl compounds with flexible zwitterionic 1,1′-[1,4-phenylenebis(methylene)]bis(pyridin-1-ium-4-carboxylate) dihydrochloride (Bpmb·2HCl) in deionized water containing drops of H2SO4resulted in the formation of a novel two-dimensional uranyl coordination polymer, namely poly[tetraoxido{μ2-1,1′-[1,4-phenylenebis(methylene)]bis(pyridin-1-ium-4-carboxylate)}di-μ3-sulfato-diuranium(VI)], [(UO2)2(SO4)2(C20H16N2O4)]n, (1). Single-crystal X-ray diffraction reveals that this coordination polymer exhibits a layered arrangement and the (UO2)2+centre is coordinated by five equatorial O atoms. The structure was further characterized by FT–IR spectroscopy, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The polymer shows high thermal stability up to 696 K. Furthermore, the photoluminescence properties of (1) has also been studied, showing it to exhibit a typical uranyl fluorescence.


2018 ◽  
Vol 34 (1) ◽  
pp. 59-65
Author(s):  
Austin M. Wheatley ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of minocycline hydrochloride dihydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Minocycline hydrochloride dihydrate crystallizes in space groupP212121(#19) witha= 7.40772(1),b= 14.44924(3),c= 22.33329(4) Å,V= 2390.465(12) Å3, andZ= 4. The minocycline cation is a zwitterion: both dimethylamino groups are protonated and one hydroxyl group is ionized. A potential ambiguity in the orientation of the amide group was resolved by considering Rietveld refinement residuals and displacement coefficients, as well as DFT energies. The crystal structure is dominated by hydrogen bonds. Both water molecules and a hydroxyl group act as donors to the chloride anion. Both protonated dimethyl amine groups act as donors to the ionized hydroxyl group. Several intramolecular O–H···O hydrogen groups help determine the conformation of the cation. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1606.


Sign in / Sign up

Export Citation Format

Share Document