scholarly journals Plasticizing Properties Improvement of Poly (4-Vinylpyridine)/Clay Composites: Effect of Composition and Clay Nature

2021 ◽  
Vol 21 (3) ◽  
pp. 5-16
Author(s):  
Fayçal Dergal ◽  
Djahida Lerari ◽  
Khaldoun Bachari

Abstract A significant number of investigations have been reported on the elaboration and characterization of Polymer/Clays composites, via different methods. In our work, new composites materials were successfully prepared by in-situ polymerization of 4-vinylpyridine (4VP), in presence of two different types of Algerian modified clays (Maghnia and Mostaganem), noted (BC) and (MC), respectively. Different percentage clays (1 wt%, 3 wt% and 5 wt%) have been used. The differential scanning calorimetry analysis reveals the variation of glass transition temperature (Tg) of the copolymer in the composite materials. We show a decrease glass transition temperature (Tg) from 147°C to 131°C for P4VP-BC and from 147°C to 124°C for P4VP-MC according to the increase percentage of clays. Thermogravimetric analysis (TGA) shows good stability of composite materials at high temperature. Fourier Transformed Infrared (FTIR), Scanning Electron Microscopy coupled with Energy dispersive X-Ray Spectroscopy (SEM-EDX) and 1H NMR spectroscopy are used to show the presence of the clays in the materials.

e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
Xifei Yu ◽  
Guo Zhang ◽  
Tongfei Shi ◽  
P.K. Dutta ◽  
Lijia An

AbstractThe functional polystyrene, (Cl-PS)2-CHCOOCH2CH2OH (designated as XPSt and coded P2) was prepared by ATRP at 1300C using CuCl and bipyridine as catalysts, 2,2-dichloro acetate-ethylene glycol (DCAG) as multifunctional initiator and THF as solvent. 4-Nitoroaniline azomethine-4’ phenol (P1) as chromophores were covalently linked to the functional end groups of the polymer by using simple displacement reaction. The functional polystyrenes, namely XPSt (P2) and (PS)2-CHCOOCH2CH2OH, designated as X-PSt and coded P3 and their post-derivatives, namely, DXPSt (P4) and DX-PSt (P5) respectively were characterized by IR, NMR and UV spectroscopies, gel permeation chromatography (GPC) and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), polarising optical microscopy (POM) and XRD studies. DSC showed that incorporation of chromophores in the side chains of polymers towards the polystyrene moiety increases the rigidity of the polymer and subsequently, its glass transition temperature; however the incorporation of side chain towards the alcoholic functional group decreases the glass transition temperature. The post derivatives do not play any significant role to increase the thermal stability (TGA). There was evidence for liquid crystalline properties in the resulting polymer derivative DXPSt (P4) as observed from POM study, which defines the alignment of chromophores into the polymers. The XRD study shows crystalline behaviour of the polymer derivative, P4. The polymer derivative, DXPSt (P5) does not show such behaviour and this may be due to the bonding of azomethine towards the short chain alcoholic telechelic alcoholic sides of the copolymer.


2011 ◽  
Vol 130-134 ◽  
pp. 1528-1531
Author(s):  
Si Chen ◽  
Jian Ming Xu ◽  
Guo Dong Tang ◽  
Xu Wang

Gelator (G2-C12-G2) was synthesized successfully, the structure of which was confirmed by1H-NMR and Mass spectra (MS). And G2-C12-G2was used to modify PMMA by “in-situ” polymerization. The results of gel permeation chromatography (GPC) showed that Mn and Mw/Mnof the PMMA composite were barely influenced by the incorporation of gel. The results of dynamic mechanical analysis (DMA) showed that the modified PMMA had higher modulus, toughness and glass transition temperature (Tg) than pure PMMA. Furthermore the results of spectrophotometer showed that the transparency of modified PMMA was nearly the same as pure PMMA .


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Nurul Fatahah Asyqin Zainal ◽  
Jean Marc Saiter ◽  
Suhaila Idayu Abdul Halim ◽  
Romain Lucas ◽  
Chin Han Chan

AbstractWe present an overview for the basic fundamental of thermal analysis, which is applicable for educational purposes, especially for lecturers at the universities, who may refer to the articles as the references to “teach” or to “lecture” to final year project students or young researchers who are working on their postgraduate projects. Description of basic instrumentation [i.e. differential scanning calorimetry (DSC) and thermogravimetry (TGA)] covers from what we should know about the instrument, calibration, baseline and samples’ signal. We also provide the step-by-step guides for the estimation of the glass transition temperature after DSC as well as examples and exercises are included, which are applicable for teaching activities. Glass transition temperature is an important property for commercial application of a polymeric material, e.g. packaging, automotive, etc. TGA is also highlighted where the analysis gives important thermal degradation information of a material to avoid sample decomposition during the DSC measurement. The step-by-step guides of the estimation of the activation energy after TGA based on Hoffman’s Arrhenius-like relationship are also provided.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 954
Author(s):  
Xavier Monnier ◽  
Sara Marina ◽  
Xabier Lopez de Pariza ◽  
Haritz Sardón ◽  
Jaime Martin ◽  
...  

The present work aims to provide insights on recent findings indicating the presence of multiple equilibration mechanisms in physical aging of glasses. To this aim, we have investigated a glass forming polyether, poly(1-4 cyclohexane di-methanol) (PCDM), by following the evolution of the enthalpic state during physical aging by fast scanning calorimetry (FSC). The main results of our study indicate that physical aging persists at temperatures way below the glass transition temperature and, in a narrow temperature range, is characterized by a two steps evolution of the enthalpic state. Altogether, our results indicate that the simple old-standing view of physical aging as triggered by the α relaxation does not hold true when aging is carried out deep in the glassy state.


2021 ◽  
Author(s):  
Teng Chi ◽  
Siddhartha Akkiraju ◽  
Zihao Liang ◽  
Ying Tan ◽  
Ho Joong Kim ◽  
...  

We document the design, synthesis, and characterization of the first low glass transition temperature, n-type (i.e., preferentially-reduced) radical polymer.


Sign in / Sign up

Export Citation Format

Share Document