Preparation and characterization of post-derivatives from functional polystyrene (ATRP) with p-nitroanilineazomethine phenol and their thermal and optical study

e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
Xifei Yu ◽  
Guo Zhang ◽  
Tongfei Shi ◽  
P.K. Dutta ◽  
Lijia An

AbstractThe functional polystyrene, (Cl-PS)2-CHCOOCH2CH2OH (designated as XPSt and coded P2) was prepared by ATRP at 1300C using CuCl and bipyridine as catalysts, 2,2-dichloro acetate-ethylene glycol (DCAG) as multifunctional initiator and THF as solvent. 4-Nitoroaniline azomethine-4’ phenol (P1) as chromophores were covalently linked to the functional end groups of the polymer by using simple displacement reaction. The functional polystyrenes, namely XPSt (P2) and (PS)2-CHCOOCH2CH2OH, designated as X-PSt and coded P3 and their post-derivatives, namely, DXPSt (P4) and DX-PSt (P5) respectively were characterized by IR, NMR and UV spectroscopies, gel permeation chromatography (GPC) and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), polarising optical microscopy (POM) and XRD studies. DSC showed that incorporation of chromophores in the side chains of polymers towards the polystyrene moiety increases the rigidity of the polymer and subsequently, its glass transition temperature; however the incorporation of side chain towards the alcoholic functional group decreases the glass transition temperature. The post derivatives do not play any significant role to increase the thermal stability (TGA). There was evidence for liquid crystalline properties in the resulting polymer derivative DXPSt (P4) as observed from POM study, which defines the alignment of chromophores into the polymers. The XRD study shows crystalline behaviour of the polymer derivative, P4. The polymer derivative, DXPSt (P5) does not show such behaviour and this may be due to the bonding of azomethine towards the short chain alcoholic telechelic alcoholic sides of the copolymer.

2007 ◽  
Vol 555 ◽  
pp. 497-502
Author(s):  
Dejan Miličević ◽  
S. Trifunović ◽  
N. Ignjatović ◽  
E. Suljovrujić

Hydroxyapatite/poly L-lactide (HAp/PLLA) is a composite biomaterial which has been widely utilized for substitution and reparation of the hard bone tissue. It is well known that gamma irradiation has been successfully employed in the modification/sterilization of such porous composites and that it has advantages over other procedures. In this study, differential scanning calorimetry (DSC) measurements were made to investigate the influence of the radiation on glass transition behavior and structural relaxation, as well as to estimate the activation energy for this process. The apparent activation energy ΔH* for structural relaxation in the glass transition region was determined on the basis of the heating rate dependence of the glass transition temperature Tg. Furthermore, the results were correlated with those obtained by gel permeation chromatography (GPC). Our findings support the fact that the radiation-induced chain scission in the PLLA phase is the main reason for the decrease of the glass transition temperature and/or activation energy with the absorbed dose.


2011 ◽  
Vol 181-182 ◽  
pp. 47-50
Author(s):  
Xin De Tang ◽  
Ye Chen ◽  
Xin Wang ◽  
Fa Qi Yu ◽  
Mei Shan Pei

A novel liquid crystalline polymer bearing azobenzene groups in both main chain and side chain has been successfully synthesized by atom transfer radical polymerization (ATRP). Dual bromide-terminated azobenzene was used as the initiator for the ATRP of azobenzene-containing monomer (M6C). The structure of the resulting polymer was confirmed by nuclear magnetic resonance (NMR), and the molecular weight and its dispersity was characterized by gel permeation chromatography (GPC). The mesomorphic properties of this novel polymer were characterized by means of polarized optical microscopy (POM) and differential scanning calorimetry (DSC). The results demonstrated that this polymer can form mesophases.


2004 ◽  
Vol 82 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Stephan Freiberg ◽  
François Lagugné-Labarthet ◽  
Paul Rochon ◽  
Almeria Natansohn

The thermochromic properties of a series of liquid crystalline polymethacrylates, containing azobenzene side-chains with variable spacer lengths, were investigated. Annealing the amorphous polymer thin films above the glass transition temperature results in a rearrangement of the azobenzene moieties, causing a hypsochromic shift in the electronic absorption spectra. A detailed investigation of the spectral shift was performed by in situ UV–vis spectroscopy and indicated the formation of H-type aggregates by the side-chain chromophores above the glass transition temperature. The rate at which the hypsochromic shift occurs is faster for polymers with shorter spacers since their high glass transition temperature results in a higher thermal energy during the thermochromic effect. Experimentally determined activation energies show that the aggregation occurs primarily due to side-chain relaxation (β-relaxation) and main-chain relaxation (α-relaxation). Further annealing above the isotropization temperature resulted in the onset of deaggregation and in most cases showed that the chromophores were freed from the ordered state.Key words: liquid-crystalline polymer, thermochromic properties, chain relaxation, aggregation, thin films, azobenzene mesogens.


e-Polymers ◽  
2004 ◽  
Vol 4 (1) ◽  
Author(s):  
Kazem Dindar Safa ◽  
Mirzaagha Babazadeh

Abstract The homopolymer of 4-chloromethylstyrene and its copolymers with styrene (in 1:3 and 1:1 mole ratio) were synthesized by bulk and solution freeradical polymerisations, respectively, at 70±1°C using α,α'-azoisobutyronitrile as an initiator. Highly sterically hindered tris(trimethylsilyl)methyl (Tsi) substituents were then covalently linked to the obtained homopolymer and copolymers. The polymers were characterized by IR, 1H NMR and 13C NMR, differential scanning calorimetry (DSC) and gel permeation chromatography. DSC showed that incorporation of Tsi substituents in the side chains of homopolymer and copolymers increases the rigidity of the polymers and, subsequently, their glass transition temperature.


2021 ◽  
Vol 21 (3) ◽  
pp. 5-16
Author(s):  
Fayçal Dergal ◽  
Djahida Lerari ◽  
Khaldoun Bachari

Abstract A significant number of investigations have been reported on the elaboration and characterization of Polymer/Clays composites, via different methods. In our work, new composites materials were successfully prepared by in-situ polymerization of 4-vinylpyridine (4VP), in presence of two different types of Algerian modified clays (Maghnia and Mostaganem), noted (BC) and (MC), respectively. Different percentage clays (1 wt%, 3 wt% and 5 wt%) have been used. The differential scanning calorimetry analysis reveals the variation of glass transition temperature (Tg) of the copolymer in the composite materials. We show a decrease glass transition temperature (Tg) from 147°C to 131°C for P4VP-BC and from 147°C to 124°C for P4VP-MC according to the increase percentage of clays. Thermogravimetric analysis (TGA) shows good stability of composite materials at high temperature. Fourier Transformed Infrared (FTIR), Scanning Electron Microscopy coupled with Energy dispersive X-Ray Spectroscopy (SEM-EDX) and 1H NMR spectroscopy are used to show the presence of the clays in the materials.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Nurul Fatahah Asyqin Zainal ◽  
Jean Marc Saiter ◽  
Suhaila Idayu Abdul Halim ◽  
Romain Lucas ◽  
Chin Han Chan

AbstractWe present an overview for the basic fundamental of thermal analysis, which is applicable for educational purposes, especially for lecturers at the universities, who may refer to the articles as the references to “teach” or to “lecture” to final year project students or young researchers who are working on their postgraduate projects. Description of basic instrumentation [i.e. differential scanning calorimetry (DSC) and thermogravimetry (TGA)] covers from what we should know about the instrument, calibration, baseline and samples’ signal. We also provide the step-by-step guides for the estimation of the glass transition temperature after DSC as well as examples and exercises are included, which are applicable for teaching activities. Glass transition temperature is an important property for commercial application of a polymeric material, e.g. packaging, automotive, etc. TGA is also highlighted where the analysis gives important thermal degradation information of a material to avoid sample decomposition during the DSC measurement. The step-by-step guides of the estimation of the activation energy after TGA based on Hoffman’s Arrhenius-like relationship are also provided.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 954
Author(s):  
Xavier Monnier ◽  
Sara Marina ◽  
Xabier Lopez de Pariza ◽  
Haritz Sardón ◽  
Jaime Martin ◽  
...  

The present work aims to provide insights on recent findings indicating the presence of multiple equilibration mechanisms in physical aging of glasses. To this aim, we have investigated a glass forming polyether, poly(1-4 cyclohexane di-methanol) (PCDM), by following the evolution of the enthalpic state during physical aging by fast scanning calorimetry (FSC). The main results of our study indicate that physical aging persists at temperatures way below the glass transition temperature and, in a narrow temperature range, is characterized by a two steps evolution of the enthalpic state. Altogether, our results indicate that the simple old-standing view of physical aging as triggered by the α relaxation does not hold true when aging is carried out deep in the glassy state.


Sign in / Sign up

Export Citation Format

Share Document