scholarly journals The Influence of Graphite Addition on the Abrasive Wear of AlMg10 Alloy Matrix Composites Reinforced with SiC Particles

2014 ◽  
Vol 14 (3) ◽  
pp. 51-54 ◽  
Author(s):  
M. Łągiewka ◽  
Z. Konopka

Abstract The presented work deals with the influence of the addition of soft graphite particles on the abrasive wear of composite reinforced with hard SiC particles. The discussed hybrid composites were produced by stirring the liquid alloy and simultaneous adding the mixture of particles. The adequately prepared suspension was gravity cast into a metal die. Both the composite castings obtained in this way and the comparative castings produced of the pure matrix alloy were examined for the abrasive wear behaviour. Photomacrographs of the sliding surfaces of the examined composites were taken, and also the hardness measurements were carried out. It was found that even a small addition of Cgr particles influences positively the tribological properties of the examined composite materials, protecting the abraded surface from the destructive action of silicon carbide particles. The work presents also the results of hardness measurements which confirm that the composite material hardness increases with an increase in the volume fraction of hard reinforcing particles.

2009 ◽  
Vol 49 (1) ◽  
pp. 8-12 ◽  
Author(s):  
S. Basavarajappa ◽  
Ajith G. Joshi ◽  
K. V. Arun ◽  
A. Praveen Kumar ◽  
M. Prasanna Kumar

Wear ◽  
1998 ◽  
Vol 223 (1-2) ◽  
pp. 79-92 ◽  
Author(s):  
V.S.R. Murthy ◽  
K. Srikanth ◽  
C.B. Raju

2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540002 ◽  
Author(s):  
Dongfeng Cheng ◽  
Jitai Niu ◽  
Zeng Gao ◽  
Peng Wang

This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al – Si – Cu – Zn – Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.


2013 ◽  
Vol 22 ◽  
pp. 416-423 ◽  
Author(s):  
TEJAS UMALE ◽  
AMARJIT SINGH ◽  
Y. REDDY ◽  
R. K. KHATITRKAR ◽  
S. G. SAPATE

The present paper reports abrasive wear behaviour of copper matrix composites reinforced with silicon carbide and silica particles. Copper – SiC (12%) and Copper-SiO2 (9%) composites were prepared by powder metallurgical technique. Metallography, image analysis and hardness studies were carried out on copper composites. The abrasive wear experiments were carried out using pin on disc apparatus. The effect of sliding distance and load was studied on Copper – SiC (12%) and Copper-SiO2 (9%) composites. The abrasive wear volume loss increased with sliding distance in both the composites although the magnitude of increase was different in each case. Copper – SiC (12%) composites exhibited relatively better abrasion resistance as compared to and Copper-SiO2 (9%) composites. The abraded surfaces were observed under scanning electron microscope to study the morphology of abraded surfaces and operating wear mechanism. The analysis of wear debris particles was also carried out to substantiate the findings of the investigation.


Sign in / Sign up

Export Citation Format

Share Document