Comparison of Two Tests to Determine the Maximal Aerobic Speed

2020 ◽  
Vol 60 (2) ◽  
pp. 252-262
Author(s):  
Benhammou Saddek ◽  
Jérémy B.J. Coquart ◽  
Laurent Mourot ◽  
Belkadi Adel ◽  
Mokkedes Moulay Idriss ◽  
...  

SummaryThe aims of this study were (a): to compare maximal physiological responses (maximal heart rate: HRmax and blood lactate concentration: [La-]) and maximal aerobic speed (MAS) achieved during a gold standard test (T-VAM) to those during a new test entitled: the 150-50 Intermittent Test (150-50IT), and (b): to test the reliability of the 150-50IT. Eighteen middle-distance runners performed, in a random order, the T-VAM and the 150-50IT. Moreover, the runners performed a second 150-50IT (retest). The results of this study showed that the MAS obtained during 150-50IT were significantly higher than the MAS during the T-VAM (19.1 ± 0.9 vs. 17.9 ± 0.9 km.h−1, p < 0.001). There was also significant higher values in HRmax (193 ± 4 vs. 191 ± 2 bpm, p = 0.011), [La-] (11.4 ± 0.4 vs. 11.0 ± 0.5 mmol.L−1, p = 0.039) during the 150-50IT. Nevertheless, significant correlations were noted for MAS (r = 0.71, p = 0.001) and HRmax (r = 0.63, p = 0.007). MAS obtained during the first 150-50IT and the retest were not significantly different (p = 0.76) and were significantly correlated (r = 0.94, p < 0.001, intraclass correlation coefficient = 0.93 and coefficient of variation = 6.8 %). In conclusion, the 150-50IT is highly reproducible, but the maximal physiological responses derived from both tests cannot be interchangeable in the design of training programs.

2020 ◽  
Vol 60 (2) ◽  
pp. 241-251
Author(s):  
Benhammou Saddek ◽  
Jérémy B.J. Coquart ◽  
Laurent Mourot ◽  
Belkadi Adel ◽  
Mokkedes Moulay Idriss ◽  
...  

SummaryThe aims of this study were (a): to compare maximal physiological responses (maximal heart rate: HRmax and blood lactate concentration: [La-]) and maximal aerobic speed (MAS) achieved during a gold standard test (T-VAM) to those during a new test entitled: the 150-50 Intermittent Test (150-50IT), and (b): to test the reliability of the 150-50IT. Eighteen middle-distance runners performed, in a random order, the T-VAM and the 150-50IT. Moreover, the runners performed a second 150-50IT (retest). The results of this study showed that the MAS obtained during 150-50IT were significantly higher than the MAS during the T-VAM (19.1 ± 0.9 vs. 17.9 ± 0.9 km.h−1, p < 0.001). There was also significant higher values in HRmax (193 ± 4 vs. 191 ± 2 bpm, p = 0.011), [La-] (11.4 ± 0.4 vs. 11.0 ± 0.5 mmol.L−1, p = 0.039) during the 150-50IT. Nevertheless, significant correlations were noted for MAS (r = 0.71, p = 0.001) and HRmax (r = 0.63, p = 0.007). MAS obtained during the first 150-50IT and the retest were not significantly different (p = 0.76) and were significantly correlated (r = 0.94, p < 0.001, intraclass correlation coefficient = 0.93 and coefficient of variation = 6.8 %). In conclusion, the 150-50IT is highly reproducible, but the maximal physiological responses derived from both tests cannot be interchangeable in the design of training programs.


2015 ◽  
Vol 10 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Hassane Zouhal ◽  
Abderraouf Ben Abderrahman ◽  
Jacques Prioux ◽  
Beat Knechtle ◽  
Lotfi Bouguerra ◽  
...  

Purpose:To determine the effect of drafting on running time, physiological response, and rating of perceived exertion (RPE) during 3000-m track running.Methods:Ten elite middle- and long-distance runners performed 3 track-running sessions. The 1st session determined maximal oxygen uptake and maximal aerobic speed using a lightweight ambulatory respiratory gasexchange system (K4B2). The 2nd and the 3rd tests consisted of nondrafting 3000-m running (3000-mND) and 3000-m running with drafting for the 1st 2000 m (3000-mD) performed on the track in a randomized counterbalanced order.Results:Performance during the 3000-mND (553.59 ± 22.15 s) was significantly slower (P < .05) than during the 3000-mD (544.74 ± 18.72 s). Cardiorespiratory responses were not significantly different between the trials. However, blood lactate concentration was significantly higher (P < .05) after the 3000-mND (16.4 ± 2.3 mmol/L) than after the 3000-mD (13.2 ± 5.6 mmol/L). Athletes perceived the 3000-mND as more strenuous than the 3000-mD (P < .05) (RPE = 16.1 ± 0.8 vs 13.1 ± 1.3). Results demonstrate that drafting has a significant effect on performance in highly trained runners.Conclusion:This effect could not be explained by a reduced energy expenditure or cardiorespiratory effort as a result of drafting. This raises the possibility that drafting may aid running performance by both physiological and nonphysiological (ie, psychological) effects.


2012 ◽  
Vol 31 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Yusuf Köklü

A Comparison Of Physiological Responses To Various Intermittent And Continuous Small-Sided Games In Young Soccer Players The purpose of this study was to investigate physiological responses to various intermittent and continuous small-sided games (SSGs) - including 2-a-side, 3-a-side, and 4-a-side games - in young soccer players. Twenty soccer players (average age 16.6±0.5 years; mean body height 176.2±4.6 cm; mean body mass 65.9±5.6 kg) voluntarily participated in this study. The subjects underwent anthropometric measurements followed by the YoYo intermittent recovery test. Then, they played intermittent (SSGint) and continuous (SSGcon) 2-a-side, 3-a-side, and 4-a-side soccer-specific SSGs in random order at 2-day intervals. Paired t-tests were used to assess differences between the training regimens (intermittent and continuous) in terms of heart rate (HR), percentage of maximum HR (%HRmax), and blood lactate concentration (LA). The differences in LA, HR and %HRmax between the 2-a-side, 3-a-side and 4-a-side SSGint or the 2-a-side, 3-a-side and 4-a-side SSGcon were identified using a one-way analysis of variance with repeated measures. The results demonstrated that the 3-a-side SSGint and SSGcon measurements were significantly higher than the 2-a-side and 4-a-side games in terms of HR and %HRmax, whereas the 2-a-side SSGint and SSGcon resulted in higher LA responses compared to other SSG types. The study results also demonstrated that SSGint and SSGcon are similar in terms of physiological responses except for 2-a-side game LA responses. The results of this study suggest that both SSGint and SSGcon could be used for the physiological adaptations required for soccer specific aerobic endurance.


Author(s):  
Rebekah J. Nixon ◽  
Sascha H. Kranen ◽  
Anni Vanhatalo ◽  
Andrew M. Jones

AbstractThe metabolic boundary separating the heavy-intensity and severe-intensity exercise domains is of scientific and practical interest but there is controversy concerning whether the maximal lactate steady state (MLSS) or critical power (synonymous with critical speed, CS) better represents this boundary. We measured the running speeds at MLSS and CS and investigated their ability to discriminate speeds at which $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 was stable over time from speeds at which a steady-state $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 could not be established. Ten well-trained male distance runners completed 9–12 constant-speed treadmill tests, including 3–5 runs of up to 30-min duration for the assessment of MLSS and at least 4 runs performed to the limit of tolerance for assessment of CS. The running speeds at CS and MLSS were significantly different (16.4 ± 1.3 vs. 15.2 ± 0.9 km/h, respectively; P < 0.001). Blood lactate concentration was higher and increased with time at a speed 0.5 km/h higher than MLSS compared to MLSS (P < 0.01); however, pulmonary $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 did not change significantly between 10 and 30 min at either MLSS or MLSS + 0.5 km/h. In contrast, $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 increased significantly over time and reached $$\dot{V}{\text{O}}_{2\,\,\max }$$ V ˙ O 2 max at end-exercise at a speed ~ 0.4 km/h above CS (P < 0.05) but remained stable at a speed ~ 0.5 km/h below CS. The stability of $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 at a speed exceeding MLSS suggests that MLSS underestimates the maximal metabolic steady state. These results indicate that CS more closely represents the maximal metabolic steady state when the latter is appropriately defined according to the ability to stabilise pulmonary $$\dot{V}{\text{O}}_{2}$$ V ˙ O 2 .


1980 ◽  
Vol 48 (6) ◽  
pp. 1060-1064 ◽  
Author(s):  
R. M. Glaser ◽  
M. N. Sawka ◽  
M. F. Brune ◽  
S. W. Wilde

The purpose of this investigation was to compare physical work capacity (PWC), peak oxygen uptake (peak VO2), maximal pulmonary ventilation (VEmax), maximal heart rate (HRmax), and maximal blood lactate concentration (LAmax) for wheelchair ergometer (WERG) and arm crank ergometer (ACE) exercise. For this, wheelchair-dependent (n = 6) and able-bodied (n = 10) subjects completed a progressive intensity, discontinuous test for each mode of exercise. Each test was terminated by physical exhaustion and/or an inability to maintain a flywheel velocity of 180 m.min-1. Relatively high correlation coefficients were found between values obtained during the two modes of ergometry for PWC, peak VO2, VEmax, and HRmax. WERG exercise was found to elicit a significantly (P less than 0.05) lower PWC (by 36%), HRmax (by 7%), and LAmax (by 26%) than ACE exercise. Peak VO2 and VEmax, however, were similar for both exercise modes. These data suggest that either exercise mode may be used for fitness testing and training of people who cannot use their legs and that arm cranking may be a superior method to propel wheelchairs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ibrahim Ouergui ◽  
Emerson Franchini ◽  
Hamdi Messaoudi ◽  
Hamdi Chtourou ◽  
Anissa Bouassida ◽  
...  

This study investigated the effect of area sizes (4 × 4, 6 × 6, and 8 × 8 m) and effort-pause ratios (free combat vs. 1:2) variation on the physiological and perceptive responses during taekwondo combats (Study 1). In a second study, the effects on physical performance of 8 weeks of small combat-based training added to regular taekwondo training were investigated (Study 2). In random order, 32 male taekwondo athletes performed six (i.e., two effort-to-pause ratios × three area sizes conditions) different 2-min taekwondo combats (Study 1). Thereafter (Study 2), they were randomly assigned to three experimental groups (4 × 4, 6 × 6, and 8 × 8 m) and an active control group (CG). Regarding Study 1, blood lactate concentration [La] before and after each combat, mean heart rate (HRmean) during each combat, and rating of perceived exertion (CR-10) immediately after each combat were assessed. Regarding Study 2, progressive specific taekwondo (PSTT) to estimate maximum oxygen consumption (VO2max), taekwondo-specific agility, and countermovement jump (CMJ) tests were administered before and after 8 weeks of training. Study 1 results showed that 4 × 4 m elicited lower HRmean values compared with 6 × 6 m (d = −0.42 [small], p = 0.030) and free combat induced higher values compared with the 1:2 ratio (d = 1.71 [large], p &lt; 0.001). For [La]post, 4 × 4 m area size induced higher values than 6 × 6 m (d = 0.99 [moderate], p &lt; 0.001) and 8 × 8 m (d = 0.89 [moderate], p &lt; 0.001) and free combat induced higher values than 1:2 ratio (d = 0.69 [moderate], p &lt; 0.001). Higher CR-10 scores were registered after free combat compared with 1:2 ratio (d = 0.44 [small], p = 0.007). For Study 2, VO2max increased after training [F(1, 56) =30.532, p &lt; 0.001; post-hoc: d = 1.27 [large], p &lt; 0.001] with higher values for 4 × 4 m compared with CG (d = 1.15 [moderate], p = 0.009). Agility performance improved after training [F(1, 56) = 4.419, p = 0.04; post-hoc: d = −0.46 [small], p = 0.04] and 4 × 4 m induced lower values in comparison with 6 × 6 m (d = −1.56 [large], p = 0.001) and CG (d = −0.77 [moderate], p = 0.049). No training type influenced CMJ performance. Smaller area size elicited contrasting results in terms of metabolic demand compared with larger sizes (i.e., lower HRmean but higher [La] and CR-10), whereas free combat induced variables' consistently higher values compared with imposed 1:2 ratio (Study 1). Taekwondo training is effective to improve VO2max and agility (Study 2), but small combat training modality should be investigated further.


2013 ◽  
Vol 38 (9) ◽  
pp. 953-959 ◽  
Author(s):  
Dimitrios Patikas ◽  
Alexandros Kansizoglou ◽  
Nikolaos Koutlianos ◽  
Craig A. Williams ◽  
Konstantinos Hatzikotoulas ◽  
...  

The purpose of this study was to examine the effects of submaximal sustained contractions on fatigue and recovery properties in untrained prepubescent boys (n = 14) and men (n = 14). All participants performed, in random order, an isometric plantar flexion at 20% and 60% of their maximal voluntary contraction (MVC) until exhaustion (20%fatigue and 60%fatigue, respectively). During both fatigue protocols, surface electromyogram (sEMG) of the soleus and tibialis anterior muscles was recorded. Before and after the fatigue protocol, MVCs and blood lactate concentration were obtained. During 20%fatigue and 60%fatigue, agonist and antagonist sEMG increased gradually to a similar extent in both groups. Immediately after fatigue, MVC torque decreased in both groups, compared with prefatigue values, and boys recovered faster than men in both fatigue protocols. The reduction in agonist sEMG during MVC after fatigue was not significantly different between men and boys (p < 0.05), independent of the fatigue protocol. sEMG of boys recovered to baseline values 3 min after the 20%fatigue and 60%fatigue protocols, whereas men did not recover. Lactate concentration increased immediately after the end of the fatigue protocols, compared with the prefatigue values (p < 0.05). This increase was higher for the 60%fatigue than for 20%fatigue protocol, and did not differ between boys and men. It is concluded that low- and middle-intensity submaximal sustained isometric fatigue protocols induce similar fatigue effects in boys and men. Furthermore, it was shown that boys can recover faster than men, independent of the contraction intensity that induces fatigue.


2018 ◽  
Vol 16 (1) ◽  
pp. 149
Author(s):  
Georgia Rozi ◽  
Vassilios Thanopoulos ◽  
Milivoj Dopsaj

The purpose of this study was to investigate the differences in maximum concentration of lactic acid in the blood, heart rate and performance time on the test of 4x50m freestyle swimming on a sample of two protocols: a) one breath every 3 strokes and b) 14-15m of every 50m were swum with underwater movement of the feet without breathing and a rest with one breath every 3 strokes (apnea). The sample consisted of 15 female swimmers of the competitive level aged: 15.0 ± 1.0 years. Their basic style was the freestyle. To determine the maximum blood lactate concentration, capillary blood samples were taken in the 3rd, 5th, 7th minute and analyzed by the automatic analyzer Scout Lactate Germany. We also measured the heart rate immediately after each swimming protocol. The ANOVA showed that there were no statistically significant differences between the two protocols. Maximum lactate concentration in the protocol with apnea was 10.02 ± 3.05mmol / L and without apnea 8.9 ± 3.5mmol / L. Heart rate was 186 ± 6 and 186 ± 7 b/min respectively, and performance time 140.04 ± 8.13 and 138.73 ± 8.01sec in swimmers aged 14-16. Swimming apnea needs to be studied in a larger age sample with more variables to ascertain the effects on sprint swimming.


Author(s):  
Kamil Michalik ◽  
Kuba Korta ◽  
Natalia Danek ◽  
Marcin Smolarek ◽  
Marek Zatoń

Background: The linearly increased loading (RAMP) incremental test is a method commonly used to evaluate physical performance in a laboratory, but the best-designed protocol remains unknown. The aim of this study was to compare the selected variables used in training control resulting from the two different intensities of RAMP incremental tests. Methods: Twenty healthy and physically active men took part in this experiment. The tests included two visits to a laboratory, during which anthropometric measurements, incremental test on a cycle ergometer, and examinations of heart rate and blood lactate concentration were made. The cross-over study design method was used. The subjects underwent a randomly selected RAMP test with incremental load: 0.278 W·s−1 or 0.556 W·s−1. They performed the second test a week later. Results: Peak power output was significantly higher by 51.69 W (p < 0.001; t = 13.10; ES = 1.13) in the 0.556 W·s−1 group. Total work done was significantly higher in the 0.278 W·s−1 group by 71.93 kJ (p < 0.001; t = 12.55; ES = 1.57). Maximal heart rate was significantly higher in the 0.278 W·s−1 group by 3.30 bpm (p < 0.01; t = 3.72; ES = 0.48). There were no statistically significant differences in heart rate recovery and peak blood lactate. Conclusions: We recommend use of the 0.556 W·s−1 RAMP protocol because it is of shorter duration compared with 0.278 W·s−1 and as such practically easier and of less effort for subjects.


2021 ◽  
pp. 1-10
Author(s):  
Jeanette M. Ricci ◽  
Katharine D. Currie ◽  
Todd A. Astorino ◽  
Karin A. Pfeiffer

Girls’ acute responses to group-based high-intensity interval exercise (HIIE) are not well characterized. Purpose: To compare acute responses to treadmill-based HIIE (TM) and body-weight resistance exercise circuit (CIRC) and to CIRC performed in a small-group setting (group CIRC). Method: Nineteen girls (9.1 [1.1] y) completed exercise testing on a TM to determine peak oxygen uptake, peak heart rate (HRpeak), and maximal aerobic speed. The TM involved eight 30-second sprints at 100% maximal aerobic speed. The CIRC consisted of 8 exercises of maximal repetitions performed for 30 seconds. Each exercise bout was followed by 30 seconds of active recovery. The blood lactate concentration was assessed preexercise and postexercise. The ratings of perceived exertion, affective valence, and enjoyment were recorded at preexercise, Intervals 3 and 6, and postexercise. Results: The mean heart rate was higher during group CIRC (92% [7%] HRpeak) than CIRC (86% [7%] HRpeak) and TM (85% [4%] HRpeak) ( = .49). The mean oxygen uptake equaled 76% (11%) of the peak oxygen uptake for CIRC and did not differ from TM (d = 0.02). The CIRC elicited a greater postexercise blood lactate concentration versus TM (5.8 [1.7] vs 1.4 [0.4] mM, d = 3.61). The perceptual responses were similar among conditions (P > .05), and only the rating of perceived exertion increased during exercise ( = .78). Conclusion: Whether performed individually or in a small group, CIRC represents HIIE and may be a feasible alternative to running-based HIIE.


Sign in / Sign up

Export Citation Format

Share Document