scholarly journals Exposure to particulate matter: a brief review with a focus on cardiovascular effects, children, and research conducted in Turkey

2021 ◽  
Vol 72 (4) ◽  
pp. 244-253
Author(s):  
Aylin Elkama ◽  
Ayça Aktaş Şüküroğlu ◽  
Gonca Çakmak

Abstract Exposure to environmental particulate matter (PM), outdoor air pollution in particular, has long been associated with adverse health effects. Today, PM has widely been accepted as a systemic toxicant showing adverse effects beyond the lungs. There are numerous studies, from those in vitro to epidemiological ones, suggesting various direct and indirect PM toxicity mechanisms associated with cardiovascular risks, including inflammatory responses, oxidative stress, changes in blood pressure, autonomic regulation of heart rate, suppression of endothelium-dependent vasodilation, thrombogenesis, myocardial infarction, and fibrinolysis. In addition to these and other health risks, considerations about air quality standards should include individual differences, lifestyle, and vulnerable populations such as children. Urban air pollution has been a major environmental issue for Turkey, and this review will also address current situation, research, and measures taken in our country.

2021 ◽  
pp. 1-10
Author(s):  
Hongqiao Zhang ◽  
Carla D’Agostino ◽  
Henry Jay Forman ◽  
Mafalda Cacciottolo ◽  
Max Thorwald ◽  
...  

Background: Air pollution is widely associated with accelerated cognitive decline at later ages and risk of Alzheimer’s disease (AD). Correspondingly, rodent models demonstrate the neurotoxicity of ambient air pollution and its components. Our studies with nano-sized particulate matter (nPM) from urban Los Angeles collected since 2009 have shown pro-amyloidogenic and pro-inflammatory responses. However, recent batches of nPM have diminished induction of the glutamate receptor GluA1 subunit, Iba1, TNFα, Aβ 42 peptide, and white matter damage. The same methods, materials, and mouse genotypes were used throughout. Objective: Expand the nPM batch comparisons and evaluate archived brain samples to identify the earliest change in nPM potency. Methods: Batches of nPM were analyzed by in vitro cell assays for NF-κB and Nrf2 induction for comparison with in vivo responses of mouse brain regions from mice exposed to these batches, analyzed by PCR and western blot. Results: Five older nPM batches (2009–2017) and four recent nPM batches (2018, 2019) for NF-κB and Nrf2 induction showed declines in nPM potency after 2017 that paralleled declines of in vivo activity from independent exposures in different years. Conclusion: Transcription-based in vitro assays of nPM corresponded to the loss of in vivo potency for inflammatory and oxidative responses. These recent decreases of nPM neurotoxicity give a rationale for evaluating possible benefits to the risk of dementia and stroke in Los Angeles populations.


2021 ◽  
pp. 62-75
Author(s):  
S. V. Kakareka ◽  
◽  
S. V. Salivonchyk ◽  

The paper deals with the quantification of fine particulate matter (PM10) dispersion in atmospheric air of an industrial city using the AERMOD model by an example of Zhlobin (the Gomel oblast, Belarus). Model input data and procedures for the emission inventory and obtaining spatially distributed estimates are described. Emissions and dispersion of PM10 from the main categories of sources are considered, including industrial facilities, road and off-road mobile sources, domestic sector, and agriculture. It is shown that the main contribution to high PM10 concentrations in atmospheric air is made by industrial enterprises, the domestic sector, and road transport. The spatial pattern of urban air pollution is described. The simulation results are compared with the results of PM10 measurements at the monitoring site, their satisfactory consistency is demonstrated.


2020 ◽  
Author(s):  
Vineeta Tanwar ◽  
Jeremy M Adelstein ◽  
Loren E Wold

Abstract The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly grown into a pandemic. According to initial reports, the lungs were thought to be the primary target, but recent case studies have shown its reach can extend to other organs including the heart and blood vessels. The severity of cardiac complications of COVID-19 depends on multiple underlying factors, with air pollutant exposure being one of them, as reported by several recent studies. Airborne particulate matter (PM) attracts heightened attention due to its implication in various diseases, especially respiratory and cardiovascular diseases. Inhaled PM not only carries microorganisms inside the body but also elicits local and systemic inflammatory responses resulting in altering the host’s immunity and increasing susceptibility to infection. Previous and recent studies have documented that PM acts as a ‘carrier’ for the virus and aids in spreading viral infections. This review presents the mechanisms and effects of viral entry and how pollution can potentially modulate pathophysiological processes in the heart. We aimed to concisely summarize studies examining cardiovascular outcomes in COVID-19 patients and postulate on how PM can influence these outcomes. We have also reviewed evidence on the use of renin–angiotensin system inhibitors, namely angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, in patients with COVID-19. The interplay of pollution and SARS-CoV-2 is essential to understanding the effects of accentuated cardiovascular effects of COVID-19 and deserves in-depth experimental investigations.


2008 ◽  
Vol 20 (3) ◽  
pp. 319-337 ◽  
Author(s):  
Konrad Ludwig Maier ◽  
Francesca Alessandrini ◽  
Ingrid Beck-Speier ◽  
Thomas Philipp Josef Hofer ◽  
Silvia Diabaté ◽  
...  

F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 596
Author(s):  
Christopher Lovett ◽  
Mafalda Cacciottolo ◽  
Farimah Shirmohammadi ◽  
Amin Haghani ◽  
Todd E. Morgan ◽  
...  

Background: Ambient particulate matter (PM) smaller than 2.5 µm in diameter (PM2.5) undergoes diurnal changes in chemical composition due to photochemical oxidation. In this study we examine the relationships between oxidative activity and inflammatory responses associated with these diurnal chemical changes. Because secondary PM contains a higher fraction of oxidized PM species, we hypothesized that PM2.5 collected during afternoon hours would induce a greater inflammatory response than primary, morning PM2.5. Methods: Time-integrated aqueous slurry samples of ambient PM2.5 were collected using a direct aerosol-into-liquid collection system during defined morning and afternoon time periods. PM2.5 samples were collected for 5 weeks in the late summer (August-September) of 2016 at a central Los Angeles site. Morning samples, largely consisting of fresh primary traffic emissions (primary PM), were collected from 6-9am (am-PM2.5), and afternoon samples were collected from 12-4pm (pm-PM2.5), when PM composition is dominated by products of photochemical oxidation (secondary PM). The two diurnally phased PM2.5 slurries (am- and pm-PM2.5) were characterized for chemical composition and BV-2 microglia were assayed in vitro for oxidative and inflammatory gene responses. Results: Contrary to expectations, the am-PM2.5 slurry had more proinflammatory activity than the pm-PM2.5 slurry as revealed by nitric oxide (NO) induction, as well as the upregulation of proinflammatory cytokines IL-1β, IL-6, and CCL2 (MCP-1), as assessed by messenger RNA production. Conclusions: The diurnal differences observed in this study may be in part attributed to the greater content of transition metals and water-insoluble organic carbon (WIOC) of am-PM2.5 (primary PM) vs. pm-PM2.5 (secondary PM), as these two classes of compounds can increase PM2.5 toxicity.


Author(s):  
Mohammad Hashem Askariyeh ◽  
Madhusudhan Venugopal ◽  
Haneen Khreis ◽  
Andrew Birt ◽  
Josias Zietsman

Recent studies suggest that the transportation sector is a major contributor to fine particulate matter (PM2.5) in urban areas. A growing body of literature indicates PM2.5 exposure can lead to adverse health effects, and that PM2.5 concentrations are often elevated close to roadways. The transportation sector produces PM2.5 emissions from combustion, brake wear, tire wear, and resuspended dust. Traffic-related resuspended dust is particulate matter, previously deposited on the surface of roadways that becomes resuspended into the air by the movement of traffic. The objective of this study was to use regulatory guidelines to model the contribution of resuspended dust to near-road traffic-related PM2.5 concentrations. The U.S. Environmental Protection Agency (EPA) guidelines for quantitative hotspot analysis were used to predict traffic-related PM2.5 concentrations for a small network in Dallas, Texas. Results show that the inclusion of resuspended dust in the emission and dispersion modeling chain increases prediction of near-road PM2.5 concentrations by up to 74%. The results also suggest elevated PM2.5 concentrations near arterial roads. Our results are discussed in the context of human exposure to traffic-related air pollution.


2020 ◽  
Vol 328 ◽  
pp. 52-60 ◽  
Author(s):  
Wanjun Yuan ◽  
Ciara C. Fulgar ◽  
Xiaolin Sun ◽  
Christoph F.A. Vogel ◽  
Ching-Wen Wu ◽  
...  

Author(s):  
Liliana Cori ◽  
Gabriele Donzelli ◽  
Francesca Gorini ◽  
Fabrizio Bianchi ◽  
Olivia Curzio

The adverse health effects of exposure to air pollutants, notably to particulate matter (PM), are well-known, as well as the association with measured or estimated concentration levels. The role of perception can be relevant in exploring effects and pollution control actions. The purpose of this study was to explore studies that analyse people’s perception, together with the measurement of air pollution, in order to elucidate the relationship between them. We conducted a systematic review in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. In March 2020, PubMed, EMBASE, and Scopus databases were explored in an attempt to search for studies published from 2000 to 2020. The review included 38 studies, most of which were conducted in China (n = 13) and the United States (n = 11) and published over the last four years (n = 26). Three studies were multicenter investigations, while five articles were based on a national-level survey. The air quality (AQ) was assessed by monitoring stations (n = 24) or dispersion models (n = 7). Many studies were population questionnaire-based, air monitoring and time-series studies, and web-based investigations. A direct association between exposure and perception emerged in 20 studies. This systematic review has shown that most of the studies establish a relationship between risk perception measurement. A broad spectrum of concepts and notions related to perception also emerged, which is undoubtedly an indicator of the wealth of available knowledge and is promising for future research.


Sign in / Sign up

Export Citation Format

Share Document