scholarly journals Initial Assessment of Abrasive Wear Resistance of Austempered Cast Iron with Vermicular Graphite

2014 ◽  
Vol 59 (3) ◽  
pp. 1073-1076 ◽  
Author(s):  
M. S. Soiński ◽  
A. Jakubus

Abstract The work compares the abrasive wear resistance of cast iron containing vermicular graphite, measured in the as-cast state and after austempering carried out at 290°C, 340°C, or 390°C. Theexaminations were performed by means of the T-01M tribological tester using the pin-on-disc configuration. Specimens used for examinations were taken from the end tabs of the tensile specimens, these being cut out of the test walls of the double-leg keel block test castings. Examinations proved that the austempering process increases the abrasive wear resistance of vermicular cast iron by several times as compared with the as-cast material. A tendency for a slight decrease in abrasive wear with an increase in austempering temperature can be stated. The coefficient of friction took a little higher values for cast iron after thermal treatment than for the as-cast material. The work was completed with roughness examination by means of electron scanning microscopy.

2013 ◽  
Vol 58 (3) ◽  
pp. 973-976 ◽  
Author(s):  
D. Kopyciński ◽  
M. Kawalec ◽  
A. Szczęsny ◽  
R. Gilewski ◽  
S. Piasny

Abstract The resistance of castings to abrasive wear depends on the cast iron abrasive hardness ratio. It has been anticipated that the white cast iron structure will be changed by changing the type of metal matrix and the type of carbides present in this matrix, which will greatly expand the application area of castings under the harsh operating conditions of abrasive wear. Detailed metallographic analysis was carried out to see the structure obtained in selected types of white cast iron, i.e. with additions of chromium and vanadium. The study compares the results of abrasive wear resistance tests performed on the examined types of cast iron.


Author(s):  
T. R. Uma ◽  
J. B. Simha ◽  
K. Narasimha Murthy

Laboratory abrasive wear tests have been reported on permanent moulded toughened austempered ductile iron. The influence of austempering temperature on the abrasive wear behavior have been studied and discussed. The results indicate that with increase in austempering temperature from 300°C to 350°C, the abrasive wear resistance increased, and as the austempering temperature increased to 400°C, there was reduction in the abrasive wear resistance. These results have been interpreted based on the structural features and graphite morphology.


Tribologia ◽  
2016 ◽  
Vol 269 (5) ◽  
pp. 183-193
Author(s):  
Wojciech TARASIUK ◽  
Mariusz LISZEWSKI ◽  
Bazyli KRUPICZ ◽  
Ewa KASPRZYCKA

This paper presents the results of tribological tests performed on a T-11 pin-on-disc type, which made it possible to determine the intensity of abrasive wear of steel 20MnCr5 subjected to selected thermo-chemical heat treatments. The tested steel, after the hardening and tempering process, is characterized by high endurance parameters and is used on heavily loaded machine parts. It is frequently used for elements subjected to intense abrasion. The analysis involved the following: carburizing, boronizing, and various methods of diffusion chromizing. For large loads, it is advisable to apply boronizing or carburizing with hardening. Chrome plating entails a very thin layer of increased hardness, which is characterised by a low abrasive wear resistance at high loads.


2017 ◽  
Vol 26 (46) ◽  
Author(s):  
Oscar Fabián Higuera-Cobos ◽  
Jeison Bucurú-Vasco ◽  
Andrés Felipe Loaiza-Patiño ◽  
Mónica Johanna Monsalve-Arias ◽  
Dairo Hernán Mesa-Grajales

This paper studies the influence of variables such as holding temperatures and times during austempering of High Chromium White Cast Iron (HCWCI), with the following chemical composition: Cr 25 %, C 3 %, Si 0.47 %, Mn 0.74 % and Mo 1.02 %. The aim of the austempering was to modify the percentage of retained austenite and its correlation to abrasive wear resistance under different conditions.Microhardness tests, SEM-EDS and XRD were performed to determine mechanical properties, chemical composition, and type of carbides and microstructures present, respectively. The tests complied with the ASTM G-65 standard. Results showed that the best performance against abrasion was achieved for austempering at 450 ºC with holding time of 6 hours.


Author(s):  
Z. Ding ◽  
R. Knight ◽  
R.W. Smith

Abstract The results of low stress, pin-on-disc and high stress grinding abrasive wear tests on coatings produced by plasma and oxy-acetylene flame spraywelding are presented. FNil5A and FNiWC35 Ni-based self-fluxing alloys were selected as typical spraywelding materials for abrasive wear resistance. The abrasive wear resistance mechanisms of welded overlays produced by various materials and processes were also characterized by hardness tests, microstructural and compositional analyses, and through analysis of the effect of different kinds of abrasive on the wear resistant of Ni-base self-fluxing spraywelding overlays. Results showed that FNiWC35 overlays exhibited improved resistance under low stress abrasion, but the relative wear resistances of FNiWC35 and FNil5A still depended primarily on the type and hardness of the abrasive medium used. For the same material, the abrasive wear resistance of oxyacetylene flame sprayed overlays was higher than that produced by plasma spraywelding. The wear resistance of the plasma spraywelding overlays depended not only on the material, but also strongly on the spraywelding process parameters.


2015 ◽  
Vol 56 (5) ◽  
pp. 720-725 ◽  
Author(s):  
Jatupon Opapaiboon ◽  
Prasonk Sricharoenchai ◽  
Sudsakorn Inthidech ◽  
Yasuhiro Matsubara

2014 ◽  
Vol 592-594 ◽  
pp. 1262-1266
Author(s):  
A. Johnney Mertens ◽  
S. Senthilvelan

In this work, abrasive wear performance of multi-walled carbon nanotube (CNT) reinforced polypropylene (PP) has been studied. Various weight percentage of CNT/PP nanocomposites were prepared through melt intercalation with the aid of twin screw extruder. Prepared composites were subjected to sliding wear against silicon carbide abrasive paper with the aid of pin-on-disc configuration. Worn out surface morphology were observed under microscope and non-contact profilometer to understand the wear mechanism. Since the dominant friction mechanism observed to be is ploughing, no lubrication effect of CNT was observed. CNT/PP composite exhibits inferior wear resistance than unfilled PP due to its brittleness. With increased CNT, wear resistance found to decreases.


2014 ◽  
Vol 14 (1) ◽  
pp. 63-66 ◽  
Author(s):  
D. Kopyciński ◽  
S. Piasny ◽  
M. Kawalec ◽  
A. Madizhanova

Abstract The resistance of cast iron to abrasive wear depends on the metal abrasive hardness ratio. For example, hardness of the structural constituents of the cast iron metal matrix is lower than the hardness of ordinary silica sand. Also cementite, the basic component of unalloyed white cast iron, has hardness lower than the hardness of silica. Some resistance to the abrasive effect of the aforementioned silica sand can provide the chromium white cast iron containing in its structure a large amount of (Cr, Fe)7C3 carbides characterised by hardness higher than the hardness of the silica sand in question. In the present study, it has been anticipated that the white cast iron structure will be changed by changing the type of metal matrix and the type of carbides present in this matrix, which will greatly expand the application area of castings under the harsh operating conditions of abrasive wear. Moreover, the study compares the results of abrasive wear resistance tests performed on the examined types of cast iron. Tests of abrasive wear resistance were carried out on a Miller machine. Samples of standard dimensions were exposed to abrasion in a double to-and-fro movement, sliding against the bottom of a trough filled with an aqueous abrasive mixture containing SiC + distilled water. The obtained results of changes in the sample weight were approximated with a power curve and shown further in the study.


2013 ◽  
Vol 586 ◽  
pp. 133-136
Author(s):  
Šárka Houdková ◽  
Olga Bláhová ◽  
Michaela Kašparová

The indentation methods (HR15N, HV0.3, HIT, EIT) were used to evaluate differences between the WC-based coatings with 12, 17 and 25% of Co binder. The two sets of WC-12%Co coatings with two different sets of parameters were sprayed to evaluate the influence of spraying parameters. The measured mechanical characteristic were correlated to the to the wear resistance of the coatings evaluated by dry sand/rubber wheel test according to ASTM G-65 and pin-on disc according to ASTM G-99. The measured results showed that there is almost no difference between the abrasive wear resistance of WC-Co coating with 12 and 17% of Co binder, while the wear of coating with 25% of Co binder is significantly higher. The importance of the spraying parameters on the WC-12%Co coatings properties has been found to be comparable to the importance of binder content influence.


2019 ◽  
Vol 61 (7) ◽  
pp. 690-694
Author(s):  
Tanju Teker ◽  
S. Osman Yilmaz ◽  
Erhan Kerkut

Sign in / Sign up

Export Citation Format

Share Document