Abrasive Wear Characteristics of Ni-base Self-fluxing Alloy Spraywelding Overlays

Author(s):  
Z. Ding ◽  
R. Knight ◽  
R.W. Smith

Abstract The results of low stress, pin-on-disc and high stress grinding abrasive wear tests on coatings produced by plasma and oxy-acetylene flame spraywelding are presented. FNil5A and FNiWC35 Ni-based self-fluxing alloys were selected as typical spraywelding materials for abrasive wear resistance. The abrasive wear resistance mechanisms of welded overlays produced by various materials and processes were also characterized by hardness tests, microstructural and compositional analyses, and through analysis of the effect of different kinds of abrasive on the wear resistant of Ni-base self-fluxing spraywelding overlays. Results showed that FNiWC35 overlays exhibited improved resistance under low stress abrasion, but the relative wear resistances of FNiWC35 and FNil5A still depended primarily on the type and hardness of the abrasive medium used. For the same material, the abrasive wear resistance of oxyacetylene flame sprayed overlays was higher than that produced by plasma spraywelding. The wear resistance of the plasma spraywelding overlays depended not only on the material, but also strongly on the spraywelding process parameters.

Tribologia ◽  
2016 ◽  
Vol 269 (5) ◽  
pp. 183-193
Author(s):  
Wojciech TARASIUK ◽  
Mariusz LISZEWSKI ◽  
Bazyli KRUPICZ ◽  
Ewa KASPRZYCKA

This paper presents the results of tribological tests performed on a T-11 pin-on-disc type, which made it possible to determine the intensity of abrasive wear of steel 20MnCr5 subjected to selected thermo-chemical heat treatments. The tested steel, after the hardening and tempering process, is characterized by high endurance parameters and is used on heavily loaded machine parts. It is frequently used for elements subjected to intense abrasion. The analysis involved the following: carburizing, boronizing, and various methods of diffusion chromizing. For large loads, it is advisable to apply boronizing or carburizing with hardening. Chrome plating entails a very thin layer of increased hardness, which is characterised by a low abrasive wear resistance at high loads.


2013 ◽  
Vol 58 (3) ◽  
pp. 841-844
Author(s):  
B. Kalandyk

Abstract This paper presents the results of experimental studies, the main aim of which has been to demonstrate that changes in the microstructure of austenitic 18%Cr-9%Ni cast steel provoked by the addition of 1.4% boron, and boron with titanium, give increased wear resistance. After melting the high-alloyed 18%Cr-9%Ni cast steel with an addition of boron, and boron with titanium, metallographic examinations were conducted using light microscopy and SEM. These examinations revealed in the austenitic structure of the 18%Cr-9%Ni cast steel, the presence of a eutectic rich in boron and chromium, and characterised by a microhardness of 1838-1890 μ HV20. Additionally, in the cast steel inoculated with boron and titanium, the presence of titanium nitride precipitates was observed. Changes that have occurred in the microstructure as a result of introducing the additions of boron, and boron with titanium, also caused an increase of the cast steel hardness from 212 HV30 to 290-320 HV30 and 320-350 HV30, respectively. To determine the abrasive wear resistance, 16-hour Miller test was performed (ASTM G 75-07), wherein the abrasive medium was a mixture of SiC and water. Obtaining the hard, rich in boron and chromium, eutectic and titanium nitride precipitates in the structure of 18%Cr-9%Ni cast steel increased the abrasive wear resistance by approximately 21%, according to the data recorded in the sixteenth hour of the test cycle. As an additional benchmark point for the results obtained served the wear resistant, structural, L35GSM steel used for castings working in difficult conditions. Comparing the values of abrasive wear resistance obtained for the 18%Cr-9%Ni cast steel and cast L35GSM steel, an increase in the wear resistance of the 18%Cr-9%Ni cast steel by about 35% has been proved.


2013 ◽  
Vol 586 ◽  
pp. 133-136
Author(s):  
Šárka Houdková ◽  
Olga Bláhová ◽  
Michaela Kašparová

The indentation methods (HR15N, HV0.3, HIT, EIT) were used to evaluate differences between the WC-based coatings with 12, 17 and 25% of Co binder. The two sets of WC-12%Co coatings with two different sets of parameters were sprayed to evaluate the influence of spraying parameters. The measured mechanical characteristic were correlated to the to the wear resistance of the coatings evaluated by dry sand/rubber wheel test according to ASTM G-65 and pin-on disc according to ASTM G-99. The measured results showed that there is almost no difference between the abrasive wear resistance of WC-Co coating with 12 and 17% of Co binder, while the wear of coating with 25% of Co binder is significantly higher. The importance of the spraying parameters on the WC-12%Co coatings properties has been found to be comparable to the importance of binder content influence.


Author(s):  
N Ch Kaushik ◽  
RN Rao

In this experimental investigation, the effect of applied pressure on high-stress abrasive wear resistance characteristics of stir-cast Al 6082-5 wt% SiC-5 wt%Gr (Al–SiC–Gr) hybrid metal matrix composites was studied and compared with its unreinforced matrix alloy and 10 wt% SiC-reinforced (Al–SiC) composites. The tests were carried on pin-on-disc equipment at applied pressures of 0.1–0.3 MPa, sliding distance of 75 m, and SiC abrasive grit size of 100 µm and 200 µm. It was noted that the wear resistance decreases with increase in applied pressure in both as-cast and T6 conditions. The improvement in wear resistance was 1.63 (alloy) to 3.29 m/mm3 (Al–SiC–Gr) in case of lower grit size and applied pressures. However, the marginal improvement of wear resistance was observed i.e. 0.67 (alloy) to 1.05 m/mm3 (Al–SiC–Gr) at higher grit size and applied pressures. Relative wear resistance plots indicate that hybrid composites conceded better wear resistance properties compared to SiC-reinforced composites. The evaluation of wear mechanisms, worn surfaces of the pins, emery papers, and debris was also studied using scanning electron microscopy.


2014 ◽  
Vol 59 (3) ◽  
pp. 1073-1076 ◽  
Author(s):  
M. S. Soiński ◽  
A. Jakubus

Abstract The work compares the abrasive wear resistance of cast iron containing vermicular graphite, measured in the as-cast state and after austempering carried out at 290°C, 340°C, or 390°C. Theexaminations were performed by means of the T-01M tribological tester using the pin-on-disc configuration. Specimens used for examinations were taken from the end tabs of the tensile specimens, these being cut out of the test walls of the double-leg keel block test castings. Examinations proved that the austempering process increases the abrasive wear resistance of vermicular cast iron by several times as compared with the as-cast material. A tendency for a slight decrease in abrasive wear with an increase in austempering temperature can be stated. The coefficient of friction took a little higher values for cast iron after thermal treatment than for the as-cast material. The work was completed with roughness examination by means of electron scanning microscopy.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2212 ◽  
Author(s):  
Ladislav Falat ◽  
Miroslav Džupon ◽  
Miroslava Ťavodová ◽  
Richard Hnilica ◽  
Veronika Ľuptáčiková ◽  
...  

Five different alloy hardfacings on 16MnCr5 grade low-carbon ferritic–pearlitic steel were investigated in terms of their abrasive wear resistance in laboratory testing conditions. The selected hardfacing materials, namely “E520 RB”, “RD 571”, “LNM 420FM”, “E DUR 600”, and “Weartrode 62”, were individually deposited onto plain ground-finish surfaces of 10 mm thick steel plate samples. The studied hardfacings were fabricated using several different welding methods and process parameters proposed by their industrial manufacturers. In the present comparative study, the results obtained from laboratory abrasive wear tests of the investigated hardfacings were analyzed and discussed in relation to their microstructure, hardness, and wear mechanism characteristics. Regardless of great variety in microstructure and chemical composition of individual hardfacing materials, the results clearly indicated the governing factor for the wear resistance improvement to be the overall carbon content of the used hardfacing material. Thus it has been shown that the “E520 RB” hardfacing exhibited the highest abrasive wear resistance thanks to its appropriate hardness and beneficial “ledeburite-type” eutectic microstructure.


2019 ◽  
Vol 91 (5) ◽  
pp. 11-16
Author(s):  
Michał Szymura ◽  
Maciej Różański

The article presents the results of the study of the significance of influence of positioning deposited beads towards direction of abrasive movement, to resistance on grind wear platesHARDPLATE 100S’ abrasive wear. The study on relevance of influence was conducted by using completely randomized design. The range of study has covered testing the metal-material abrasive wear resistance, macroscopic and microscopic metallographic examination and hardness tests.


Sign in / Sign up

Export Citation Format

Share Document