scholarly journals Single-Frequency Ionospheric-Delay Correction from BeiDou & GPS Systems for Northern Hemisphere

2019 ◽  
Vol 54 (1) ◽  
pp. 1-15
Author(s):  
Ashraf Farah

Abstract The range delay caused by the ionosphere layer is the major current source of error for GNSS users with single-frequency receivers. GNSS advice users to correct this type of error using ionospheric models whose coefficients are sent in their navigation messages. GPS-users use the Klobuchar model to correct this type of error. GPS navigation message contains the model’s eight coefficients which vary on the basis of seasonal ionospheric variations and average solar flux. The correction accuracy of Klobuchar model is about 50% (rms) of the ionospheric range delay. Beidou system calculates and broadcast 8 parameters of Klobuchar model based on continuous monitoring stations. BeiDou system updates the ionospheric coefficients every two hours. GPS-Klobuchar model uses completely different coefficients than BeiDou-Klobuchar model. This research demonstrates a comparison study between the Klobuchar model using the GPS broadcast coefficients and the same model using BeiDou-coefficients. The correction accuracy offered by the two models has been judged using the most accurate International GNSS Service-Global Ionospheric Maps (IGS-GIMs) for three different-latitude stations along northern hemisphere, one station in low-latitude region, the second station is in mid-latitude region and the third station is in high-latiude region to reflect models’ behaviour in different geographic regions. The study was applied over three different months of the year 2017 that each of them reflects a different activity state for the ionosphere layer. The study proves that BeiDou model is able to show the ionosphere’s day-to-day fluctuations while GPS model can’t. It can be concluded that GPS model offers better behaviour than BeiDou model in correcting range delay in low-latitude and high-latitude geographic regions under any activity state for the ionosphere. BeiDou model offers better correction accuracy than GPS model in mid-latitude under any activity state for the ionosphere.

2020 ◽  
Vol 55 (2) ◽  
pp. 61-76
Author(s):  
Ashraf Farah

AbstractThe GNSS observations suffer from different types of errors that could affect the achieved positioning accuracy based on the receiver type used. Single-frequency receivers are widely used worldwide because of its low cost. The ionospheric delay considers the most challenging error for single-frequency GNSS observations. All satellite navigation systems, except GLONASS, are advising their users to correct for the ionospheric delay using a certain model. Those models’ coefficients are sent to users in the system’s navigation message. These models are different in their accuracy and behavior based on its foundation theory as well as the updating rate of their coefficients. The GPS uses Klobuchar model for mitigating the ionospheric delay. BeiDou system (BDS-2) adopts a slightly modified Klobuchar model that resembles GPS ICA (Ionospheric Correction Algorithm) with eight correction parameters but is formulated in a geographic coordinate system with different coefficients in origin and updating rate. Galileo system uses a different model (NeQuick model). This article investigates the behavior of the three models in correcting the ionospheric delay for three stations at different latitudes during 3 months of different states of ionospheric activity, comparing with International GNSS Service-Global Ionospheric Maps (IGS-GIMs). It is advised from this research’s outputs to use the GPS model for mitigating the ionospheric delay in low-latitude regions during the state of low-and medium-activity ionosphere. It is advised to use the BeiDou model for mitigating the ionospheric delay in mid-latitude regions during different states of ionospheric activity. It is advised to use the Galileo model for mitigating the ionospheric delay in high-latitude regions during different states of ionospheric activity. Also, the Galileo model is recommended for mitigating the ionospheric delay for low-latitude regions during the state of high-activity ionosphere.


2017 ◽  
Vol 35 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Oladipo Emmanuel Abe ◽  
Xurxo Otero Villamide ◽  
Claudia Paparini ◽  
Rodrigue Herbert Ngaya ◽  
Sandro M. Radicella ◽  
...  

Abstract. Rate of change of TEC (ROT) and its index (ROTI) are considered a good proxy to characterize the occurrence of ionospheric plasma irregularities like those observed after sunset at low latitudes. SBASs (satellite-based augmentation systems) are civil aviation systems that provide wide-area or regional improvement to single-frequency satellite navigation using GNSS (Global Navigation Satellite System) constellations. Plasma irregularities in the path of the GNSS signal after sunset cause severe phase fluctuations and loss of locks of the signals in GNSS receiver at low-latitude regions. ROTI is used in this paper to characterize plasma density ionospheric irregularities in central–western Africa under nominal and disturbed conditions and identified some days of irregularity inhibition. A specific low-latitude algorithm is used to emulate potential possible SBAS message using real GNSS data in the western African low-latitude region. The performance of a possible SBAS operation in the region under different ionospheric conditions is analysed. These conditions include effects of geomagnetic disturbed periods when SBAS performance appears to be enhanced due to ionospheric irregularity inhibition. The results of this paper could contribute to a feasibility assessment of a European Geostationary Navigation Overlay System-based SBAS in the sub-Saharan African region.


2020 ◽  
Vol 10 (7) ◽  
pp. 2268
Author(s):  
Ren Wang ◽  
Jingxiang Gao ◽  
Yifei Yao ◽  
Peng Sun ◽  
Moufeng Wan

This paper analyzes the convergence time and the root mean square (RMS) error of single frequency (SF) precise point positioning (PPP) in the ionospheric-constrained (TIC1) and troposphere- and ionospheric-constrained (TIC2) conditions, when the stations are at a low latitude, mid-latitude, and high latitude area during the period of a magnetic storm (MS) and a non-magnetic storm (NMS). In this paper, 375 IGS (international global navigation satellite system (GNSS) service) stations were selected from all over the world for 30 days in September 2017. The 24 hour daily observations were split for each station into 8 data sets of 3 hours each, so that a total of 90,000 tests were carried out. After statistical analysis, it was concluded that: during the MS period, the percentage of TIC2 shortened compared to the TIC1 convergence time, and it was by at least 3.9%, 3.0%, and 9.3% when the station was at global, low latitude, and high latitude areas, respectively. According to the statistical analysis, during the NMS period the convergence time was shortened about at least 12.8%, 11.0%, and 30.0% with respect to the stations in the MS period at global, low, and high latitude areas, respectively. If the station was located in the mid-latitude region, the convergence time was not shortened in some modes. The ionospheric activity in the mid-latitude region was less than that in the low-latitude region, while there were more stations in the mid-latitude region, and the precision of the global ionospheric maps (GIMs) and zenith tropospheric delay (ZTD) products were also slightly higher. Overall, TIC1 and TIC2 have a greater impact on convergence time, but have less impact on positioning accuracy, and only have a greater impact in different environments during the MS and NMS periods.


2021 ◽  
Vol 13 (9) ◽  
pp. 1621
Author(s):  
Duojie Weng ◽  
Shengyue Ji ◽  
Yangwei Lu ◽  
Wu Chen ◽  
Zhihua Li

The differential global navigation satellite system (DGNSS) is an enhancement system that is widely used to improve the accuracy of single-frequency receivers. However, distance-dependent errors are not considered in conventional DGNSS, and DGNSS accuracy decreases when baseline length increases. In network real-time kinematic (RTK) positioning, distance-dependent errors are accurately modelled to enable ambiguity resolution on the user side, and standard Radio Technical Commission for Maritime Services (RTCM) formats have also been developed to describe the spatial characteristics of distance-dependent errors. However, the network RTK service was mainly developed for carrier-phase measurements on professional user receivers. The purpose of this study was to modify the local-area DGNSS through the use of network RTK corrections. Distance-dependent errors can be reduced, and accuracy for a longer baseline length can be improved. The results in the low-latitude areas showed that the accuracy of the modified DGNSS could be improved by more than 50% for a 17.9 km baseline during solar active years. The method in this paper extends the use of available network RTK corrections with high accuracy to normal local-area DGNSS applications.


Author(s):  
Ana L. Hernández-Damián ◽  
Sergio R. S. Cevallos-Ferriz ◽  
Alma R. Huerta-Vergara

ABSTRACTA new flower preserved in amber in sediments of Simojovel de Allende, México, is identified as an extinct member of Staphyleaceae, a family of angiosperms consisting of only three genera (Staphylea, Turpinia and Euscaphis), which has a large and abundant fossil record and is today distributed over the Northern Hemisphere. Staphylea ochoterenae sp. nov. is the first record of a flower for this group, which is small, pedicelled, pentamer, bisexual, with sepals and petals with similar size, dorsifixed anthers and superior ovary. Furthermore, the presence of stamens with pubescent filaments allows close comparison with extant flowers of Staphylea bulmada and S. forresti, species currently growing in Asia. However, their different number of style (one vs. three) and the apparent lack of a floral disc distinguish them from S. ochoterenae. The presence of Staphyleaceae in southern Mexico ca. 23 to 15My ago is evidence of the long history of integration of vegetation in low-latitude North America, in which some lineages, such as Staphylea, could move southwards from high latitudes of the Northern Hemisphere, as part of the Boreotropical Flora. In Mexico it grew in association with tropical elements, as suggested by the fossil record of the area.


Author(s):  
Adil Hussain ◽  
Munawar Shah

The international reference ionosphere (IRI) models have been widely used for correcting the ionospheric scintillations at different altitude levels. An evaluation on the performance of VTEC correction from IRI models (version 2007, 2012 and 2016) over Sukkur, Pakistan (27.71º N, 68.85º E) is presented in this work. Total Electron Content (TEC) from IRI models and GPS in 2019 over Sukkur region are compared. The main aim of this comparative analysis is to improve the VTEC in low latitude Sukkur, Pakistan. Moreover, this study will also help us to identify the credible IRI model for the correction of Global Positioning System (GPS) signal in low latitude region in future. The development of more accurate TEC finds useful applications in enhancing the extent to which ionospheric influences on radio signals are corrected. VTEC from GPS and IRI models are collected between May 1, 2019 and May 3, 2019. Additionally, Dst and Kp data are also compared in this work to estimate the geomagnetic storm variations. This study shows a good correlation of 0.83 between VTEC of GPS and IRI 2016. Furthermore, a correlation of 0.82 and 0.78 is also recorded for IRI 2012 and IRI 2007 respectively, with VTEC of GPS. The IRI TEC predictions and GPS-TEC measurements for the studied days reveal the potential of IRI model as a good candidate over Pakistan.


Sign in / Sign up

Export Citation Format

Share Document