scholarly journals Phytoconstituents from Markhamia Tomentosa Bind To HPV Oncoprotein with Apoptogenic Potential: A Molecular Modeling Approach

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mutiat B. Ibrahim ◽  
Adeola T. Kola-Mustapha ◽  
Niyi S. Adelakun ◽  
Neil A. Koorbanally

Abstract Markhamia tomentosa crude extract and fractions exhibited potent growth inhibitory effects capable to induce apoptosis in cervical (HeLa) cancer cell line via in vitro model. Presently, interaction of M. tomentosa phytoconstituents with molecular drug targets to exert its anticancer property is evaluated via in silico study. Identified phytoconstituents from M. tomentosa were retrieved from PubChem database and docked in active sites of HPV 16 E6, caspase -3 and caspase -8 targets using AutoDockVina from PyRx software. Screening for druglikeness; and absorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions was carried out with the use of SwissADME and pkCSM web servers. Standard melphalan and co-crystallized ligands of caspases -3 and -8 enzymes were used to validate protein-ligand interactions. Molecular dynamic simulation was used to validate the stability of the hit molecules complexed with caspases -3 and -8. All identified phytoconstituents from M. tomentosa showed binding affinity for HPV with docking scores range of - 5.4 to -2.6 kcal/mol. Ajugol, carnosol, luteolin and phytol showed good docking energy range of -6.8 to -3.6 kcal/mol; and -4.8 to -1.9 kcal/mol for the active sites of caspases -3 and -8 targets respectively. Based on docking scores; drug-likeliness; and ADMET predictions; luteolin and carnosol were selected as hit compounds. These molecules were found to be stable within the binding site of caspase -3 target throughout the 40ns simulation time. These findings identified hit ligands from M. tomentosa phytoconstituents that inhibit HPV 16 E6 oncogene expression with stimulation of caspases -3 and -8 targets.

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1134
Author(s):  
Roxanna Hajbabaie ◽  
Matthew T. Harper ◽  
Taufiq Rahman

The ongoing coronavirus pandemic has been a burden on the worldwide population, with mass fatalities and devastating socioeconomic consequences. It has particularly drawn attention to the lack of approved small-molecule drugs to inhibit SARS coronaviruses. Importantly, lessons learned from the SARS outbreak of 2002–2004, caused by severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), can be applied to current drug discovery ventures. SARS-CoV-1 and SARS-CoV-2 both possess two cysteine proteases, the main protease (Mpro) and the papain-like protease (PLpro), which play a significant role in facilitating viral replication, and are important drug targets. The non-covalent inhibitor, GRL-0617, which was found to inhibit replication of SARS-CoV-1, and more recently SARS-CoV-2, is the only PLpro inhibitor co-crystallised with the recently solved SARS-CoV-2 PLpro crystal structure. Therefore, the GRL-0617 structural template and pharmacophore features are instrumental in the design and development of more potent PLpro inhibitors. In this work, we conducted scaffold hopping using GRL-0617 as a reference to screen over 339,000 ligands in the chemical space using the ChemDiv, MayBridge, and Enamine screening libraries. Twenty-four distinct scaffolds with structural and electrostatic similarity to GRL-0617 were obtained. These proceeded to molecular docking against PLpro using the AutoDock tools. Of two compounds that showed the most favourable predicted binding affinities to the target site, as well as comparable protein-ligand interactions to GRL-0617, one was chosen for further analogue-based work. Twenty-seven analogues of this compound were further docked against the PLpro, which resulted in two additional hits with promising docking profiles. Our in silico pipeline consisted of an integrative four-step approach: (1) ligand-based virtual screening (scaffold-hopping), (2) molecular docking, (3) an analogue search, and, (4) evaluation of scaffold drug-likeness, to identify promising scaffolds and eliminate those with undesirable properties. Overall, we present four novel, and lipophilic, scaffolds obtained from an exhaustive search of diverse and uncharted regions of chemical space, which may be further explored in vitro through structure-activity relationship (SAR) studies in the search for more potent inhibitors. Furthermore, these scaffolds were predicted to have fewer off-target interactions than GRL-0617. Lastly, to our knowledge, this work contains the largest ligand-based virtual screen performed against GRL-0617.


2005 ◽  
Vol 388 (2) ◽  
pp. 615-621 ◽  
Author(s):  
Luís GALES ◽  
Sandra MACEDO-RIBEIRO ◽  
Gemma ARSEQUELL ◽  
Gregorio VALENCIA ◽  
Maria João SARAIVA ◽  
...  

Ex vivo and in vitro studies have revealed the remarkable amyloid inhibitory potency and specificity of iododiflunisal in relation to transthyretin [Almeida, Macedo, Cardoso, Alves, Valencia, Arsequell, Planas and Saraiva (2004) Biochem. J. 381, 351–356], a protein implicated in familial amyloidotic polyneuropathy. In the present paper, the crystal structure of transthyretin complexed with this diflunisal derivative is reported, which enables a detailed analysis of the protein–ligand interactions. Iododiflunisal binds very deep in the hormone-binding channel. The iodine substituent is tightly anchored into a pocket of the binding site and the fluorine atoms provide extra hydrophobic contacts with the protein. The carboxylate substituent is involved in an electrostatic interaction with the Nζ of a lysine residue. Moreover, ligand-induced conformational alterations in the side chain of some residues result in the formation of new intersubunit hydrogen bonds. All these new interactions, induced by iododiflunisal, increase the stability of the tetramer impairing the formation of amyloid fibrils. The crystal structure of this complex opens perspectives for the design of more specific and effective drugs for familial amyloidotic polyneuropathy patients.


2018 ◽  
Vol 13 (04) ◽  
pp. 133-155
Author(s):  
Priyanka Biswas

Protein–ligand interactions act as a pivot to the understanding of most of the biological interactions. The study of interactions between proteins and cellular molecules has led to the establishment and identification of various important pathways that control biological systems. Investigators working in different fields of biological sciences have an intrinsic interest in this field and complement their findings by the application of different biophysical approaches and tools to quantify protein–ligand interactions that include protein–small molecules, protein–DNA, protein–RNA, protein–protein both in vitro and in vivo. In this paper, the various biophysical techniques that can be employed to study such interactions will be discussed. In addition to native gel electrophoresis and fluorescence-based methods, more details will be discussed, on the broad range of modern day biophysical tools such as Circular Dichroism, Fourier Transform Infrared (FTIR) Spectroscopy, Isothermal Titration Calorimetry, Analytical Ultracentrifugation, Surface Plasmon Resonance, Fluorescence Correlation Spectroscopy, Differential Scanning Fluorimetry, Nuclear Magnetic Resonance, Mass Spectroscopy, Single Molecule Spectroscopy, Dual Polarization Interferometry, Micro Scale Thermophoresis and Electro–switchable Biosensors that can be used to study the different aspects of protein–ligand interactions.


Author(s):  
D. Filimonov ◽  
B. Sobolev ◽  
A. Lagunin

The method for computer prediction of protein-ligand interactions was developed. The amino acid sequences of target proteins and structural descriptions of small molecule ligands are used as the input data. The method was tested on protein families representing perspective drug targets. The developed approach allows one to predict ligand-protein interactions with high efficiency.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Santhosh K. Venkatesan ◽  
Vikash Kumar Dubey

Structure-based virtual screening of NCI Diversity set II compounds was performed to indentify novel inhibitor scaffolds of trypanothione reductase (TR) fromLeishmania infantum. The top 50 ranked hits were clustered using the AuPoSOM tool. Majority of the top-ranked compounds were Tricyclic. Clustering of hits yielded four major clusters each comprising varying number of subclusters differing in their mode of binding and orientation in the active site. Moreover, for the first time, we report selected alkaloids and dibenzothiazepines as inhibitors ofLeishmania infantumTR. The mode of binding observed among the clusters also potentiates the probablein vitroinhibition kinetics and aids in defining key interaction which might contribute to the inhibition of enzymatic reduction of T[S] 2. The method provides scope for automation and integration into the virtual screening process employing docking softwares, for clustering the small molecule inhibitors based upon protein-ligand interactions.


2010 ◽  
Vol 54 (8) ◽  
pp. 3460-3470 ◽  
Author(s):  
Yasushi Tojo ◽  
Yasuhiro Koh ◽  
Masayuki Amano ◽  
Manabu Aoki ◽  
Debananda Das ◽  
...  

ABSTRACT Natural products with macrocyclic structural features often display intriguing biological properties. Molecular design incorporating macrocycles may lead to molecules with unique protein-ligand interactions. We generated novel human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing a macrocycle and bis-tetrahydrofuranylurethane. Four such compounds exerted potent activity against HIV-1LAI and had 50% effective concentrations (EC50s) of as low as 0.002 μM with minimal cytotoxicity. GRL-216 and GRL-286 blocked the replication of HIV-1NL4-3 variants selected by up to 5 μM saquinavir, ritonavir, nelfinavir, lopinavir, or atazanavir; they had EC50s of 0.020 to 0.046 μM and potent activities against six multi-PI-resistant clinical HIV-1 (HIVmPIr ) variants with EC50s of 0.027 to 0.089 μM. GRL-216 and -286 also blocked HIV-1 protease dimerization as efficiently as darunavir. When HIV-1NL4-3 was selected by GRL-216, it replicated progressively more poorly and failed to replicate in the presence of >0.26 μM GRL-216, suggesting that the emergence of GRL-216-resistant HIV-1 variants is substantially delayed. At passage 50 with GRL-216 (the HIV isolate selected with GRL-216 at up to 0.16 μM [HIV216-0.16 μM]), HIV-1NL4-3 containing the L10I, L24I, M46L, V82I, and I84V mutations remained relatively sensitive to PIs, including darunavir, with the EC50s being 3- to 8-fold-greater than the EC50 of each drug for HIV-1NL4-3. Interestingly, HIV216-0.16 μM had 10-fold increased sensitivity to tipranavir. Analysis of the protein-ligand X-ray structures of GRL-216 revealed that the macrocycle occupied a greater volume of the binding cavity of protease and formed greater van der Waals interactions with V82 and I84 than darunavir. The present data warrant the further development of GRL-216 as a potential antiviral agent for treating individuals harboring wild-type and/or HIVmPIr .


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Shouhua Zhang ◽  
Nuoya Li ◽  
Yanling Sheng ◽  
Wen Chen ◽  
Qiangliang Ma ◽  
...  

Abstract Background HBV promotes cell survival by upregulating the expression of the cellular inhibitor of apoptosis protein 2 (cIAP2), however whether it is involved in HBV-induced sorafenib resistance in liver cancer remains unclear. Methods cIAP2 overexpression and knockdown was adopted to assess the involvement of cIAP2 in HBV-induced sorafenib resistance. Anti-HBV drug lamivudine and Akt inhibitor were used to investigate the impact of HBV replication on cIAP2 expression and sorafenib resistance. Xenotransplantation mouse model was used to confirm the data on cell lines in vitro. Results Liver cancer cell line HepG2.215 showed increased cIAP2 expression and enhanced resistance to sorafenib. Upon sorafenib treatment, overexpression of cIAP2 in HepG2 lead to decreased cleaved caspase 3 level and increased cell viability, while knockdown of cIAP2 in HepG2.215 resulted in increased level of cleaved caspase 3 and decreased cell viability, suggesting the involvement of cIAP2 in HBV-induced sorafenib resistance. Furthermore, anti-HBV treatment reduced cIAP2 expression and partially restored sorafenib sensitivity in HepG2.215 cells. Xenotransplantation mouse model further confirmed that co-treatment with lamivudine and sorafenib could reduce sorafenib-resistant HepG2.215 tumor cell growth. Conclusion cIAP2 is involved in HBV-induced sorafenib resistance in liver cancer and anti-HBV treatments reduce cIAP2 expression and partially restore sorafenib sensibility.


Sign in / Sign up

Export Citation Format

Share Document