scholarly journals Investigation of the Effect of Soil Moisture Content, Contact Surface Material and Soil Texture on Soil Friction and Soil Adhesion Coefficients

2018 ◽  
Vol 21 (2) ◽  
pp. 44-50 ◽  
Author(s):  
Yousef Abbaspour-Gilandeh ◽  
Fereshteh Hasankhani-Ghavam ◽  
Gholamhosein Shahgoli ◽  
Vali Rasooli Shrabian ◽  
Mohammadreza Abbaspour-Gilandeh

Abstract Soil friction and soil adhesion increase the implement draft force and energy consumption particularly in the tools that have larger contact area with soil. The main ways of lowering the total draft force of the tillage tools include the use of proper materials in tools structures as well as application of the tools in appropriate soil moisture content condition. This paper investigates the effects of soil moisture content, contact surface material and soil texture on soil friction and soil adhesion coefficients. To measure the coefficients of soil friction and soil adhesion, a measurement system was developed at the University of Mohaghegh Ardabili. Experiments for each soil texture were performed at five levels of soil moisture content and four contact materials of steel, cast iron, rubber, and teflon with three replications. Results have shown that in all soil types, the effects of soil moisture content and contact materials had a significant effect on the coefficient of both soil friction and soil adhesion at the probability level of 1%. The coefficient of friction increased with soil moisture content increment and reached its maximum and then had a drop in the fluid phase. Results have shown that the mean values of soil friction and soil adhesion coefficients were significantly different from the studied soils.

1965 ◽  
Vol 45 (2) ◽  
pp. 171-176 ◽  
Author(s):  
J. C. Wilcox

Drainage curves following irrigation were determined at six depths in eight soils having unrestricted drainage but varying widely in soil texture. The field capacities were determined under relatively high rates of evapotranspiration. The time after irrigation that it was necessary to wait before sampling the soil, to determine field capacity, was also determined. A high positive correlation was obtained between the log of field capacity in inches and the log of time after irrigation at which to sample the soil. The time varied from about 0.5 day with 1.5 in. field capacity to 4.0 days with 35 in. From the curves of soil moisture content versus time, the errors caused by sampling too soon or too late were determined. The percentage error (i.e. percent of field capacity) increased with an increase in the error in time of sampling; it decreased with an increase in field capacity in inches; and it was greater when sampling was too soon than when it was too late.


2021 ◽  
Vol 13 (SI) ◽  
pp. 73-79
Author(s):  
G. Manikandan ◽  
B. Shridar ◽  
D. Manohar Jesudas

In the present study, the draft requirement of five tyne duck foot plough was studied on clay soil for different soil moisture content, depth of operation and forward speed of tractor using a specially designed three-point hitch dynamometer.  The designed dynamometer was matched with the tractors having category II or III hitch systems. The data acquisition system adopted for the dynamometer had NI WSN-3214 Strain Nodes, NI 9792 WSN real-time Gateway and NI LAB View 2013 software. A data logger program was developed for the three-point hitch dynamometer. The investigation was carried out at that three levels soil moisture content (10-13%, 14-16% and 17-20%), at three different depth of operation (15, 20 and 25 cm) and three levels of the forward speed of tractor (3, 5 and 7 km h-1). The designed dynamometer performed well in all the levels of the experiment. The results showed that draft force required for five tyne duck foot plough was increased (408 kg) with an increase in soil moisture content (17-20%), whereas it was increased (408 kg) with an increase in depth of operation (25 cm) and forward speed of tractor (7 km h-1). The suitable sweep, the forward speed of operation, depth of operation and soil moisture content that influenced the draft force and energy consumption for tillage operation of duck foot type plough were identified and developed duck foot plough was better coverage with better soil operation.               


2021 ◽  
Vol 11 (19) ◽  
pp. 8927
Author(s):  
Abouelnadar El. Salem ◽  
Hongchang Wang ◽  
Yuan Gao ◽  
Xiantao Zha ◽  
Mohamed Anwer Abdeen ◽  
...  

Soil adhesion is a major problem for agricultural machinery, especially in sticky soils within the plastic range. One promising and practical way to minimize soil–tool adhesion is to modify the surface geometry to one inspired by soil-burrowing animals. In this study, 27 domed discs were fabricated according to an L27 (33) Taguchi orthogonal array and tested to determine the optimal dimensions of domed surfaces to reduce drag force. The optimized domed disc was tested in a soil bin under different soil conditions (soil texture: silty loam and sandy clay loam; soil moisture content: 23%, 30%, and 37%). All trials included a flat disc (without a dome pattern) as a control. The optimal dimensions of domed surfaces to generate the lowest possible drag force under the present experimental conditions were explored based on signal-to-noise ratio analysis. The optimal levels of control parameters were found at a surface coverage ratio of 60%, dome height of 5 mm, and dome base diameter of 20 mm. Statistics revealed that the dome height-to-diameter ratio and disc coverage ratio are crucial factors that influence the drag force of domed surfaces. In contrast, the dome base diameter had a limited influence on drag force. In all treatments, the drag force of the optimized domed disc was less than that of the flat disc (by about 9% to 25%, according to soil conditions). Accordingly, it can be concluded that adequately designed domed surfaces could significantly reduce the drag force in sticky soil compared to their flat counterparts.


1986 ◽  
Vol 66 (1) ◽  
pp. 173-176 ◽  
Author(s):  
D. S. CHANASYK ◽  
R. H. McKENZIE

A study near Lethbridge, Alberta examined the effect of soil texture and bulk density on the calibration of a neutron probe and explored the feasibility of using only one calibration curve for measuring soil moisture. The effect of soil texture was found to be negligible. Bulk density did affect calibration, but not enough to warrant calibration based on bulk density. A calibration curve derived using all data was adequate for estimating soil moisture content and moisture changes, but the manufacturer’s curve was highly inappropriate for determination of either. Key words: Neutron probe, calibration, texture, bulk density


2015 ◽  
Vol 4 (3) ◽  
pp. 477-486 ◽  
Author(s):  
SALEH A. ALSUHAIBANI ◽  
Mohammed F. Wahby ◽  
Abdulwahed M. Aboukarima ◽  
Ibrahim S. Tabash

This study was conducted to study the effect of soil moisture content and plowingspeed of the implement on draft force of a moldboard plow (mounted-type). Three soil moisture content (5.08, 5.14 and 6.82 %db) and three plowing speed (2.67, 3.95 and 4.53 km/h) were investigated. The average tillage depth was 20 cm and the average soil bulk density was 1.73 g/cm3.The experiment was laid out in a randomized complete block design with two replications. The data collected were subjected to analysis of variance (ANOVA). Also, Least Significant Difference Test (LSD) at 5% probability was performed to compare the means of different treatments. The statistical results of the study indicated that soil moisture content and plowing speed significantly (P < 0.05) affected draft force. Draft force also decreased by increasing soil moisture content and increased by increasing plowing speed.


2011 ◽  
Vol 28 (1) ◽  
pp. 85-91 ◽  
Author(s):  
Run-chun LI ◽  
Xiu-zhi ZHANG ◽  
Li-hua WANG ◽  
Xin-yan LV ◽  
Yuan GAO

2001 ◽  
Vol 66 ◽  
Author(s):  
M. Aslanidou ◽  
P. Smiris

This  study deals with the soil moisture distribution and its effect on the  potential growth and    adaptation of the over-story species in north-east Chalkidiki. These  species are: Quercus    dalechampii Ten, Quercus  conferta Kit, Quercus  pubescens Willd, Castanea  sativa Mill, Fagus    moesiaca Maly-Domin and also Taxus baccata L. in mixed stands  with Fagus moesiaca.    Samples of soil, 1-2 kg per 20cm depth, were taken and the moisture content  of each sample    was measured in order to determine soil moisture distribution and its  contribution to the growth    of the forest species. The most important results are: i) available water  is influenced by the soil    depth. During the summer, at a soil depth of 10 cm a significant  restriction was observed. ii) the    large duration of the dry period in the deep soil layers has less adverse  effect on stands growth than in the case of the soil surface layers, due to the fact that the root system mainly spreads out    at a soil depth of 40 cm iii) in the beginning of the growing season, the  soil moisture content is    greater than 30 % at a soil depth of 60 cm, in beech and mixed beech-yew  stands, is 10-15 % in    the Q. pubescens  stands and it's more than 30 % at a soil depth of 60 cm in Q. dalechampii    stands.


Sign in / Sign up

Export Citation Format

Share Document