scholarly journals How does the ski boot affect human gait and joint loading?

2021 ◽  
Vol 13 (1) ◽  
pp. 163-169
Author(s):  
Karol Lann vel Lace ◽  
Michalina Błażkiewicz

Abstract Study aim: To investigate the effect of wearing ski boots on kinematic and kinetic parameters of lower limbs during gait. Furthermore, loads in lower limb joints were assessed using the musculoskeletal model. Material and methods: The study examined 10 healthy women with shoe size 40 (EUR). Kinematic and kinetic data of walking in ski boots and barefoot were collected using a Vicon system and Kistler plates. A musculoskeletal model derived from AnyBody Modeling System was used to calculate joint reaction forces. Results: Wearing ski boots caused the range of motion in the knee joint to be significantly smaller and the hip joint to be significantly larger. Muscle torques were significantly greater in walking in ski boots for the knee and hip joints. Wearing ski boots reduced the reaction forces in the lower limb joints by 18% for the ankle, 16% for the knee, and 39% for the hip. Conclusions: Ski boot causes changes in the ranges of angles in the lower limb joints and increases muscle torques in the knee and hip joints but it does not increase the load on the joints. Walking in a ski boot is not destructive in terms of forces acting in the lower limb joints.

1990 ◽  
Vol 14 (1) ◽  
pp. 33-42 ◽  
Author(s):  
G. R. B. Hurley ◽  
R. McKenney ◽  
M. Robinson ◽  
M. Zadravec ◽  
M. R. Pierrynowski

Very little quantitative biomechanical research has been carried out evaluating issues relevant to prosthetic management. The literature available suggests that amputees may demonstrate an asymmetrical gait pattern. Furthermore, studies suggest that the forces occurring during amputee gait may be unequally distributed between the contralateral and prosthetic lower limbs/This study investigates the role of the contralateral limb in amputee gait by determining lower limb joint reaction forces and symmetry of motion in an amputee and non-amputee population. Seven adult below-knee amputees and four non-amputees participated in the study. Testing involved collection of kinematic coordinate data employing a WATSMART video system and ground reaction force data using a Kistler force plate. The degree of lower limb symmetry was determined using bilateral angle-angle diagrams and a chain encoding technique. Ankle, knee and hip joint reaction forces were estimated in order to evaluate the forces acting across the joints of the amputee's contralateral limb. The amputees demonstrated a lesser degree of lower limb symmetry than the non-amputees. This asymmetrical movement was attributed to the inherent variability of the actions of the prosthetic lower limb. The forces acting across the joints of the contralateral limb were not significantly higher than that of the non-amputee. This suggests that, providing the adult amputee has a good prosthetic fit, there will not be increased forces across the joints of the contralateral limb and consequently no predisposition for the long-term wearer to develop premature degenerative arthritis.


Author(s):  
Joao Mauricio Rosario ◽  
Leonimer Flavio de Melo ◽  
Didier Dumur ◽  
Maria Makarov ◽  
Jessica Fernanda Pereira Zamaia ◽  
...  

This chapter presents the development of a lower limb orthosis based on the continuous dynamic behavior and on the events presented on the human locomotion, when the legs alternate between different functions. A computational model was developed to approach the different functioning models related to the bipedal anthropomorphic gait. Lagrange modeling was used for events modeling the non-holonomic dynamics of the system. This chapter combines the comparison of the use of the predictive control based on dynamical study and the decoupling of the dynamical model, with auxiliary parallelograms, for locating the center of mass of the mechanism using springs in order to achieve the balancing of each leg. Virtual model was implemented and its kinematic and dynamic motion analyzed through simulation of an exoskeleton, aimed at lower limbs, for training and rehabilitation of the human gait, in which the dynamic model of anthropomorphic mechanism and predictive control architecture with robust control is already developed.


Author(s):  
Joao Mauricio Rosario ◽  
Leonimer Flavio de Melo ◽  
Didier Dumur ◽  
Maria Makarov ◽  
Jessica Fernanda Pereira Zamaia ◽  
...  

This chapter presents the development of a lower limb orthosis based on the continuous dynamic behavior and on the events presented on the human locomotion, when the legs alternate between different functions. A computational model was developed to approach the different functioning models related to the bipedal anthropomorphic gait. Lagrange modeling was used for events modeling the non-holonomic dynamics of the system. This chapter combines the comparison of the use of the predictive control based on dynamical study and the decoupling of the dynamical model, with auxiliary parallelograms, for locating the center of mass of the mechanism using springs in order to achieve the balancing of each leg. Virtual model was implemented and its kinematic and dynamic motion analyzed through simulation of an exoskeleton, aimed at lower limbs, for training and rehabilitation of the human gait, in which the dynamic model of anthropomorphic mechanism and predictive control architecture with robust control is already developed.


2020 ◽  
pp. 955-968
Author(s):  
Euzébio D. de Souza ◽  
Eduardo José Lima II

Human mobility is the key element of everyday life, its reduction or loss deeply affects daily activities. In assisted rehabilitation, robotic devices have focuses on the biomechanics of motor control. However, biomechanics does not study the neurological and physiological processes related to normal gait. Biomimetics combined with biomechanics, can generate a more efficient stimulation of the motor cortex and the locomotor system. The highest efficiency obtained through torque generation models, based on the physiological response of muscles and bones to reaction forces, together with control techniques based on autonomic computation. An autonomic control algorithm has a self-adjusting behaviour, ensuring patient safety and robot operation without the continuous monitoring of the physiotherapist. Thus, this work will identify the elements that characterize the physiological stimuli related to normal human gait, focusing on the ankle joint, aiming the development of biomimetic algorithms for robots for rehabilitation of the lower limbs.


Author(s):  
Euzébio D. de Souza ◽  
Eduardo José Lima II

Human mobility is the key element of everyday life, its reduction or loss deeply affects daily activities. In assisted rehabilitation, robotic devices have focuses on the biomechanics of motor control. However, biomechanics does not study the neurological and physiological processes related to normal gait. Biomimetics combined with biomechanics, can generate a more efficient stimulation of the motor cortex and the locomotor system. The highest efficiency obtained through torque generation models, based on the physiological response of muscles and bones to reaction forces, together with control techniques based on autonomic computation. An autonomic control algorithm has a self-adjusting behaviour, ensuring patient safety and robot operation without the continuous monitoring of the physiotherapist. Thus, this work will identify the elements that characterize the physiological stimuli related to normal human gait, focusing on the ankle joint, aiming the development of biomimetic algorithms for robots for rehabilitation of the lower limbs.


2013 ◽  
Vol 29 (1) ◽  
pp. 44-48 ◽  
Author(s):  
Paulo H. Marchetti ◽  
Maria I.V. Orselli ◽  
Marcos Duarte

The aim of this study was to investigate the effects of unilateral and bilateral fatigue on both postural and power bipedal tasks. Ten healthy subjects performed two tasks: bipedal quiet standing and a maximal bipedal counter-movement jumping before and after unilateral (with either the dominant or nondominant lower limb) and bilateral (with both lower limbs) fatigue. We employed two force plates (one under each lower limb) to measure the ground reaction forces and center of pressure produced by subjects during the tasks. To quantify the postural sway during quiet standing, we calculated the resultant center of pressure (COP) speed and COP area of sway, as well as the mean weight distribution between lower limbs. To quantify the performance during the countermovement jumping, we calculated the jump height and the peak force of each lower limb. We observed that both unilateral and bilateral fatigue affected the performance of maximal voluntary jumping and standing tasks and that the effects of unilateral and bilateral fatigue were stronger in the dominant limb than in the nondominant limb during bipedal tasks. We conclude that unilateral neuromuscular fatigue affects both postural and power tasks negatively.


2019 ◽  
Vol 29 ◽  
pp. 02010
Author(s):  
Dan Ioan Stoia ◽  
Alin-Florin Totorean

The kinematical modifications of human gait associated with treadmill walking are well studied in the literature. Fewer researches are focusing on computing the dynamical parameters of the gait, in this particular situation. Starting from kinematical data recorded in treadmill walking, the paper proposes an analytical model of the lower limbs that allows computation of translational and rotational angular momentum for each segment. The experimental data used in the study were recorded using ultrasound based, 3D motion equipment. By mean of this system, relative and absolute angles of the lower limb can be computed using Cartesian coordinates of each anatomical landmark. The velocities and accelerations were obtained by numerical derivative. In order to compute the dynamical parameters, segment masses and inertias were collected from the literature. The masses are based on percentage of total body weight while the segment inertias are based on geometrical characteristics of lower limb segments.


2017 ◽  
Vol 52 (7) ◽  
pp. 643-648 ◽  
Author(s):  
Catherine Y. Wild ◽  
Avril Grealish ◽  
Diana Hopper

Context:  Because of the increasing popularity of participation in Irish dance, the incidence of lower limb injuries is high among this competitive population. Objective:  To investigate the effects of fatigue on the peak lower limb and trunk angles as well as the peak lower limb joint forces and moments of competitive female Irish dancers during the performance of a dance-specific single-limb landing. Design:  Cross-sectional study. Setting:  Laboratory. Patients or Other Participants:  Fourteen healthy, female, competitive Irish dancers (age = 19.4 ± 3.7 years, height = 165.3 ± 5.9 cm, mass = 57.9 ± 8.2 kg). Intervention(s):  Participants performed an Irish dance–specific leap before and after a dance-specific fatigue protocol. During each landing movement, 3-dimensional lower limb kinematics (250 Hz) and ground reaction forces (1000 Hz) were collected. Paired t tests were performed to determine the differences (P ≤ .05) in lower limb and trunk biomechanics prefatigue and postfatigue. Main Outcome Measure(s):  Peak lower limb and trunk angles as well as peak lower limb joint reaction forces and external moments. Results:  Compared with the prefatigue trials, dancers landed with reduced ankle plantar flexion (P = .003) and hip external rotation (P = .007) and increased hip-adduction alignment (P = .034) postfatigue. Dancers displayed greater anterior shear (P = .003) and compressive (P = .024) forces at the ankle and greater external knee-flexion moments (P = .024) during the postfatigue compared with the prefatigue landing trials. Conclusions:  When fatigued, dancers displayed a decline in landing performance in terms of aesthetics as well as increased ankle- and knee-joint loading, potentially exposing them to a greater risk of injuries.


Sign in / Sign up

Export Citation Format

Share Document