Modeling a Predictive Control of Human Locomotion Based on the Dynamic Behavior

Author(s):  
Joao Mauricio Rosario ◽  
Leonimer Flavio de Melo ◽  
Didier Dumur ◽  
Maria Makarov ◽  
Jessica Fernanda Pereira Zamaia ◽  
...  

This chapter presents the development of a lower limb orthosis based on the continuous dynamic behavior and on the events presented on the human locomotion, when the legs alternate between different functions. A computational model was developed to approach the different functioning models related to the bipedal anthropomorphic gait. Lagrange modeling was used for events modeling the non-holonomic dynamics of the system. This chapter combines the comparison of the use of the predictive control based on dynamical study and the decoupling of the dynamical model, with auxiliary parallelograms, for locating the center of mass of the mechanism using springs in order to achieve the balancing of each leg. Virtual model was implemented and its kinematic and dynamic motion analyzed through simulation of an exoskeleton, aimed at lower limbs, for training and rehabilitation of the human gait, in which the dynamic model of anthropomorphic mechanism and predictive control architecture with robust control is already developed.

Author(s):  
Joao Mauricio Rosario ◽  
Leonimer Flavio de Melo ◽  
Didier Dumur ◽  
Maria Makarov ◽  
Jessica Fernanda Pereira Zamaia ◽  
...  

This chapter presents the development of a lower limb orthosis based on the continuous dynamic behavior and on the events presented on the human locomotion, when the legs alternate between different functions. A computational model was developed to approach the different functioning models related to the bipedal anthropomorphic gait. Lagrange modeling was used for events modeling the non-holonomic dynamics of the system. This chapter combines the comparison of the use of the predictive control based on dynamical study and the decoupling of the dynamical model, with auxiliary parallelograms, for locating the center of mass of the mechanism using springs in order to achieve the balancing of each leg. Virtual model was implemented and its kinematic and dynamic motion analyzed through simulation of an exoskeleton, aimed at lower limbs, for training and rehabilitation of the human gait, in which the dynamic model of anthropomorphic mechanism and predictive control architecture with robust control is already developed.


2017 ◽  
Vol 118 (2) ◽  
pp. 1021-1033 ◽  
Author(s):  
Moshe Bondi ◽  
Gabi Zeilig ◽  
Ayala Bloch ◽  
Alfonso Fasano ◽  
Meir Plotnik

Control mechanisms for four-limb coordination in human locomotion are not fully known. To study the influence of arm swinging (AS) on bilateral coordination of the lower limbs during walking, we introduced a split-AS paradigm in young, healthy adults. AS manipulations caused deterioration in the anti-phased stepping pattern and impacted the AS amplitudes for the contralateral arm, suggesting that lower limb coordination is markedly influenced by the rhythmic AS during walking.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Tiziana Lencioni ◽  
Ilaria Carpinella ◽  
Marco Rabuffetti ◽  
Alberto Marzegan ◽  
Maurizio Ferrarin

AbstractThis paper reports the kinematic, kinetic and electromyographic (EMG) dataset of human locomotion during level walking at different velocities, toe- and heel-walking, stairs ascending and descending. A sample of 50 healthy subjects, with an age between 6 and 72 years, is included. For each task, both raw data and computed variables are reported including: the 3D coordinates of external markers, the joint angles of lower limb in the sagittal, transversal and horizontal anatomical planes, the ground reaction forces and torques, the center of pressure, the lower limb joint mechanical moments and power, the displacement of the whole body center of mass, and the surface EMG signals of the main lower limb muscles. The data reported in the present study, acquired from subjects with different ages, represents a valuable dataset useful for future studies on locomotor function in humans, particularly as normative reference to analyze pathological gait, to test the performance of simulation models of bipedal locomotion, and to develop control algorithms for bipedal robots or active lower limb exoskeletons for rehabilitation.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Emma Reznick ◽  
Kyle R. Embry ◽  
Ross Neuman ◽  
Edgar Bolívar-Nieto ◽  
Nicholas P. Fey ◽  
...  

AbstractHuman locomotion involves continuously variable activities including walking, running, and stair climbing over a range of speeds and inclinations as well as sit-stand, walk-run, and walk-stairs transitions. Understanding the kinematics and kinetics of the lower limbs during continuously varying locomotion is fundamental to developing robotic prostheses and exoskeletons that assist in community ambulation. However, available datasets on human locomotion neglect transitions between activities and/or continuous variations in speed and inclination during these activities. This data paper reports a new dataset that includes the lower-limb kinematics and kinetics of ten able-bodied participants walking at multiple inclines (±0°; 5° and 10°) and speeds (0.8 m/s; 1 m/s; 1.2 m/s), running at multiple speeds (1.8 m/s; 2 m/s; 2.2 m/s and 2.4 m/s), walking and running with constant acceleration (±0.2; 0.5), and stair ascent/descent with multiple stair inclines (20°; 25°; 30° and 35°). This dataset also includes sit-stand transitions, walk-run transitions, and walk-stairs transitions. Data were recorded by a Vicon motion capture system and, for applicable tasks, a Bertec instrumented treadmill.


2018 ◽  
Vol 161 ◽  
pp. 03010
Author(s):  
Vladimir Antipov ◽  
Alexey Postolny ◽  
Andrey Yatsun ◽  
Sergey Jatsun

In this article a study of algorithms for human movement in the lower limbs exoskeleton is presented. Human-machine system is considered, the classification of the existing exoskeletons by type of power distribution, the features of stable motion of the mechanism are presented. The law of the necessary trajectory of the center of mass of the exoskeleton is shown in the sagittal and frontal planes to maintain stability. The synchronous motion scheme of the centre of mass and the foot is described.


2019 ◽  
Vol 29 ◽  
pp. 02010
Author(s):  
Dan Ioan Stoia ◽  
Alin-Florin Totorean

The kinematical modifications of human gait associated with treadmill walking are well studied in the literature. Fewer researches are focusing on computing the dynamical parameters of the gait, in this particular situation. Starting from kinematical data recorded in treadmill walking, the paper proposes an analytical model of the lower limbs that allows computation of translational and rotational angular momentum for each segment. The experimental data used in the study were recorded using ultrasound based, 3D motion equipment. By mean of this system, relative and absolute angles of the lower limb can be computed using Cartesian coordinates of each anatomical landmark. The velocities and accelerations were obtained by numerical derivative. In order to compute the dynamical parameters, segment masses and inertias were collected from the literature. The masses are based on percentage of total body weight while the segment inertias are based on geometrical characteristics of lower limb segments.


Author(s):  
Karla A. Camarillo–Gómez ◽  
Gerardo I. Pérez-Soto ◽  
Luis A. Torres-Rico

In this paper, a lower limb orthosis is proposed to form the human gait neuromuscular patterns in patients with myelomeningocele. The orthosis has two lower limbs of 2–DOF each which reduces the motion of the hip and knee to the sagittal plane. The orthosis are assembled in a back support which also supports the patients weight. The control system for the orthosis allows to reproduce in a repetitive, controlled and autonomous way the human gait cycle at different velocities according to the patient requirements; so that, the neuromuscular patterning can be supervised by a therapist. The development of these orthosis seeks to improve the quality of life of those infants with myelomenigocele and to introduce a lower cost Mexican technology with Mexican anthropometric dimensions.


2021 ◽  
Vol 13 (1) ◽  
pp. 163-169
Author(s):  
Karol Lann vel Lace ◽  
Michalina Błażkiewicz

Abstract Study aim: To investigate the effect of wearing ski boots on kinematic and kinetic parameters of lower limbs during gait. Furthermore, loads in lower limb joints were assessed using the musculoskeletal model. Material and methods: The study examined 10 healthy women with shoe size 40 (EUR). Kinematic and kinetic data of walking in ski boots and barefoot were collected using a Vicon system and Kistler plates. A musculoskeletal model derived from AnyBody Modeling System was used to calculate joint reaction forces. Results: Wearing ski boots caused the range of motion in the knee joint to be significantly smaller and the hip joint to be significantly larger. Muscle torques were significantly greater in walking in ski boots for the knee and hip joints. Wearing ski boots reduced the reaction forces in the lower limb joints by 18% for the ankle, 16% for the knee, and 39% for the hip. Conclusions: Ski boot causes changes in the ranges of angles in the lower limb joints and increases muscle torques in the knee and hip joints but it does not increase the load on the joints. Walking in a ski boot is not destructive in terms of forces acting in the lower limb joints.


2021 ◽  
Vol 15 ◽  
Author(s):  
Joyce B. Weersink ◽  
Natasha M. Maurits ◽  
Bauke M. de Jong

BackgroundWalking is characterized by stable antiphase relations between upper and lower limb movements. Such bilateral rhythmic movement patterns are neuronally generated at levels of the spinal cord and brain stem, that are strongly interconnected with cortical circuitries, including the Supplementary Motor Area (SMA).ObjectiveTo explore cerebral activity associated with multi-limb phase relations in human gait by manipulating mutual attunement of the upper and lower limb antiphase patterns.MethodsCortical activity and gait were assessed by ambulant EEG, accelerometers and videorecordings in 35 healthy participants walking normally and 19 healthy participants walking in amble gait, where upper limbs moved in-phase with the lower limbs. Power changes across the EEG frequency spectrum were assessed by Event Related Spectral Perturbation analysis and gait analysis was performed.ResultsAmble gait was associated with enhanced Event Related Desynchronization (ERD) prior to and during especially the left swing phase and reduced Event Related Synchronization (ERS) at final swing phases. ERD enhancement was most pronounced over the putative right premotor, right primary motor and right parietal cortex, indicating involvement of higher-order organization and somatosensory guidance in the production of this more complex gait pattern, with an apparent right hemisphere dominance. The diminished within-step ERD/ERS pattern in amble gait, also over the SMA, suggests that this gait pattern is more stride driven instead of step driven.ConclusionIncreased four-limb phase complexity recruits distributed networks upstream of the primary motor cortex, primarily lateralized in the right hemisphere. Similar parietal-premotor involvement has been described to compensate impaired SMA function in Parkinson’s disease bimanual antiphase movement, indicating a role as cortical support regions.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 130 ◽  
Author(s):  
Yanxia Deng ◽  
Farong Gao ◽  
Huihui Chen

Surface electromyogram (sEMG) signals are easy to record and offer valuable motion information, such as symmetric and periodic motion in human gait. Due to these characteristics, sEMG is widely used in human-computer interaction, clinical diagnosis and rehabilitation medicine, sports medicine and other fields. This paper aims to improve the estimation accuracy and real-time performance, in the case of the knee joint angle in the lower limb, using a sEMG signal, in a proposed estimation algorithm of the continuous motion, based on the principal component analysis (PCA) and the regularized extreme learning machine (RELM). First, the sEMG signals, collected during the lower limb motion, are preprocessed, while feature samples are extracted from the acquired and preconditioned sEMG signals. Next, the feature samples dimensions are reduced by the PCA, as well as the knee joint angle system is measured by the three-dimensional motion capture system, are followed by the normalization of the feature variable value. The normalized sEMG feature is used as the input layer, in the RELM model, while the joint angle is used as the output layer. After training, the RELM model estimates the knee joint angle of the lower limbs, while it uses the root mean square error (RMSE), Pearson correlation coefficient and model training time as key performance indicators (KPIs), to be further discussed. The RELM, the traditional BP neural network and the support vector machine (SVM) estimation results are compared. The conclusions prove that the RELM method, not only has ensured the validity of results, but also has greatly reduced the learning train time. The presented work is a valuable point of reference for further study of the motion estimation in lower limb.


Sign in / Sign up

Export Citation Format

Share Document