scholarly journals High-precision local gravity survey along planned motorway tunnel in the Slovak Karst

2019 ◽  
Vol 49 (2) ◽  
pp. 207-227 ◽  
Author(s):  
Pavol Zahorec ◽  
Juraj Papčo ◽  
Peter Vajda ◽  
Stanislav Szabó

Abstract Results from a detailed gravity survey realized along the planned highway tunnel in the karstic area of Slovak Karst in the eastern Slovakia are presented. Detailed gravity profiles crossed an area of rugged topography, therefore the terrain corrections played a crucial role in the gravity data processing. The airborne laser scanning technique (LiDAR) was used in order to compile a high-resolution digital terrain model (DTM) of the surrounding area and to calculate terrain corrections properly. The difference between the Bouguer anomalies calculated with an available nationwide DTM and those with new LiDAR-based model can be significant in some places as it is presented in the paper. A new method for Bouguer correction density analysis based on surface data is presented. Special underground gravity measurements in the existing nearby railway tunnel were also conducted in order to determine the mean density of the topographic rocks. The Bouguer anomalies were used to interpret lithological contacts and tectonic/karstic discontinuities.

2010 ◽  
Vol 40 (4) ◽  
pp. 323-350 ◽  
Author(s):  
Pavol Zahorec ◽  
Roman Pašteka ◽  
Juraj Papčo

The estimation of errors in calculated terrain corrections in the Tatra Mountains In general, calculation of terrain corrections can be a substantial source of errors in evaluating Bouguer anomalies, especially in rugged mountainous areas like the Tatra Mountains where we also get the largest values of the terrain corrections as such. It is then natural that analysis of their calculations in this area can shed light on the magnitude of correction-related errors within the whole Slovak territory. In the framework of our analysis we have estimated the effect of different computing approaches as well as the influence of accuracy of the inputs, i.e. the heights and positions of the measuring points, together with the used digital terrain models. For the sake of testing the computer programs which are currently in use, we have also substituted the real terrain by synthetic topography. We found that among the concerned constituents the most important factor is the used digital terrain model and its accuracy. The possible model-caused errors can exceed 10 mGal in the Tatra Mountains (for the density of 2.67 g.cm-3).


2020 ◽  
Vol 12 (1) ◽  
pp. 1185-1199
Author(s):  
Mirosław Kamiński

AbstractThe research area is located on the boundary between two Paleozoic structural units: the Radom–Kraśnik Block and the Mazovian–Lublin Basin in the southeastern Poland. The tectonic structures are separated by the Ursynów–Kazimierz Dolny fault zone. The digital terrain model obtained by the ALS (Airborne Laser Scanning) method was used. Classification and filtration of an elevation point cloud were performed. Then, from the elevation points representing only surfaces, a digital terrain model was generated. The model was used to visually interpret the course of topolineaments and their automatic extraction from DTM. Two topolineament systems, trending NE–SW and NW–SE, were interpreted. Using the kernel density algorithm, topolineament density models were generated. Using the Empirical Bayesian Kriging, a thickness model of quaternary deposits was generated. A relationship was observed between the course of topolineaments and the distribution and thickness of Quaternary formations. The topolineaments were compared with fault directions marked on tectonic maps of the Paleozoic and Mesozoic. Data validation showed consistency between topolineaments and tectonic faults. The obtained results are encouraging for further research.


Author(s):  
Maxim A. Altyntsev ◽  
◽  
Hamid Majid Saber Karkokli ◽  

The result of laser scanning is an array of laser points. The generation of a single point cloud in a given coordinate system is carried out during the registration process at the stage of preliminary field data processing. At this stage it is also often necessary to filter the data. Laser points with an erroneous position are eliminated during the data filleting. The number of erroneous laser points is determined by the of the laser scanner characteristics, surveyed area peculiarities and weather conditions. The devel-opment of methods and algorithms for filtering laser scanning data is carried out based on the analysis of the laser point spatial position and a certain set of additional characteristics, such as intensity value, echo signal, color value. The technique of mobile laser scanning data filtering for the territory of the road passing among the forest and close to individual industrial facilities and building. The main goal of the proposed filtration technique is to obtain data for automatic generation of an accurate digital terrain model. The filtration technique was developed for data acquired under the least favorable con-ditions – in wet weather. Accuracy estimation of generating digital terrain model based on filtered data was carried out.


RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Vladimir Fonseca Nascimento ◽  
Alfredo Ribeiro Neto

ABSTRACT This paper reports the application of information acquired by aerial survey to characterize water supply reservoirs in the Pajeú River Basin (Pernambuco State/Brazil). The survey was carried out with digital cameras of high spatial resolution and laser relief profiling (LiDAR technology). Two areas were selected to apply the remote sensing products. Small reservoirs in the Quixaba Creek Basin were identified based on their topographic characteristics. Given that the small reservoirs are “depressions” in the terrain, they can be “filled”, resulting in a new Digital Terrain Model (DTM). The difference between the filled DTM and the original DTM makes it possible to identify the reservoirs. A summary of the results is: 61 reservoirs were correctly detected; 18 reservoirs were not detected; 13 reservoirs were detected erroneously. In another application, the storage capacity of the reservoirs belonging to the hydrosystems of Pajeú River Basin was estimated. The storage in these reservoirs and maximum surface area were estimated using DTM and geoprocessing tools. From the total of 31 reservoirs evaluated, eight were completely empty at the time of the LiDAR data collection. The official registers reported 83.83 million m3 for the storage capacity of these eight reservoirs, whereas our applications estimated the value at 70.23 million m3. This difference is explained by the loss of volume in the reservoirs due to the process of sediment transport.


2012 ◽  
Vol 60 (4) ◽  
pp. 227-241 ◽  
Author(s):  
Radek Roub ◽  
Tomáš Hejduk ◽  
Pavel Novák

Knowing the extent of inundation areas for individual N-year flood events, the specific flood scenarios, and having an idea about the depths and velocities in the longitudinal or transverse water course profile provided by hydrodynamic models is of key importance for protecting peoples’ lives and mitigating damage to property. Input data for creating the watercourse computational geometry are crucial for hydrodynamic models. Requirements for input data vary with respect to the hydrodynamic model used. One-dimensional (1D) hydrodynamic models in which the computing track is formed by cross-sectional profiles of the channel are characterized by lower requirements for input data. In two-dimensional (2D) hydrodynamic models, a digital terrain model is needed for the entire area studied. Financial requirements of the project increase with regard to the input data and the model used. The increase is mainly due to the high cost of the geodetic surveying of the stream channel. The paper aims at a verification and presentation of the suitability of using hydrological measurements in developing a schematization (geometry) of water courses based on topographic data gained from aerial laser scanning provided by the Czech Office for Surveying, Mapping and Cadastre. Taking into account the hydrological measurement during the schematization of the water course into the hydrodynamic model consists in the derivation of flow rate achieved at the time of data acquisition using the method of aerial laser scanning by means of hydrological analogy and in using the established flow rate values as a basis for deepening of the digital terrain model from aerial laser scanning data. Thus, the given principle helps to capture precisely the remaining part of the channel profile which is not reflected in the digital terrain model prepared by the method of aerial laser scanning and fully correct geometry is achieved for the hydrodynamic model.


2019 ◽  
Vol 8 (1) ◽  
pp. 37 ◽  
Author(s):  
Jitka Elznicová ◽  
Tomáš Matys Grygar ◽  
Jan Popelka ◽  
Martin Sikora ◽  
Petr Novák ◽  
...  

As fluvial pollution may endanger the quality of water and solids transported by rivers, mapping and evaluation of historically polluted fluvial sediments is an urgent topic. The Ploučnice River and its floodplain were polluted by local uranium mining from 1971–1989. We have studied this river since 2013 using a combination of diverse methods, including geoinformatics, to identify pollution hotspots in floodplains and to evaluate the potential for future reworking. Archival information on pollution history and past flooding was collected to understand floodplain dynamics and pollution heterogeneity. Subsequently, a digital terrain model based on laser scanning data and data analysis were used to identify the sites with river channel shifts. Finally, non-invasive geochemical mapping was employed, using portable X-ray fluorescence and gamma spectrometers. The resulting datasets were processed with geostatistical tools. One of the main outputs of the study was a detailed map of pollution distribution in the floodplain. The results showed a relationship between polluted sediment deposition, past channel shifts and floodplain development. We found that increased concentration of pollution occurred mainly in the cut-off meanders and lateral channel deposits from the mining period, the latter in danger of reworking (reconnecting to the river) in the coming decades.


2020 ◽  
Vol 12 (20) ◽  
pp. 3318 ◽  
Author(s):  
Jiaming Na ◽  
Kaikai Xue ◽  
Liyang Xiong ◽  
Guoan Tang ◽  
Hu Ding ◽  
...  

Accurate topographic mapping is a critical task for various environmental applications because elevation affects hydrodynamics and vegetation distributions. UAV photogrammetry is popular in terrain modelling because of its lower cost compared to laser scanning. However, this method is restricted in vegetation area with a complex terrain, due to reduced ground visibility and lack of robust and automatic filtering algorithms. To solve this problem, this work proposed an ensemble method of deep learning and terrain correction. First, image matching point cloud was generated by UAV photogrammetry. Second, vegetation points were identified based on U-net deep learning network. After that, ground elevation was corrected by estimating vegetation height to generate the digital terrain model (DTM). Two scenarios, namely, discrete and continuous vegetation areas were considered. The vegetation points in the discrete area were directly removed and then interpolated, and terrain correction was applied for the points in the continuous areas. Case studies were conducted in three different landforms in the loess plateau of China, and accuracy assessment indicated that the overall accuracy of vegetation detection was 95.0%, and the MSE (Mean Square Error) of final DTM (Digital Terrain Model) was 0.024 m.


2019 ◽  
Vol 11 (9) ◽  
pp. 1111 ◽  
Author(s):  
Johannes Schmidt ◽  
Johannes Rabiger-Völlmer ◽  
Lukas Werther ◽  
Ulrike Werban ◽  
Peter Dietrich ◽  
...  

The Early Medieval Fossa Carolina is the first hydro-engineering construction that bridges the Central European Watershed. The canal was built in 792/793 AD on order of Charlemagne and should connect the drainage systems of the Rhine-Main catchment and the Danube catchment. In this study, we show for the first time, the integration of Airborne LiDAR (Light Detection and Ranging) and geoarchaeological subsurface datasets with the aim to create a 3D-model of Charlemagne’s summit canal. We used a purged Digital Terrain Model that reflects the pre-modern topography. The geometries of buried canal cross-sections are derived from three archaeological excavations and four high-resolution direct push sensing transects. By means of extensive core data, we interpolate the trench bottom and adjacent edges along the entire canal course. As a result, we are able to create a 3D-model that reflects the maximum construction depth of the Carolingian canal and calculate an excavation volume of approx. 297,000 m3. Additionally, we compute the volume of the present dam remnants by Airborne LiDAR data. Surprisingly, the volume of the dam remnants reveals only 120,000 m3 and is much smaller than the computed Carolingian excavation volume. The difference reflects the erosion and anthropogenic overprint since the 8th century AD.


Sign in / Sign up

Export Citation Format

Share Document