empirical bayesian kriging
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 25)

H-INDEX

5
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
pp. 132
Author(s):  
Delia B. Senoro ◽  
Kevin Lawrence M. de Jesus ◽  
Leonel C. Mendoza ◽  
Enya Marie D. Apostol ◽  
Katherine S. Escalona ◽  
...  

This article discusses the assessment of groundwater quality using a hybrid technique that would aid in the convenience of groundwater (GW) quality monitoring. Twenty eight (28) GW samples representing 62 barangays in Calapan City, Oriental Mindoro, Philippines were analyzed for their physicochemical characteristics and heavy metal (HM) concentrations. The 28 GW samples were collected at suburban sites identified by the coordinates produced by Global Positioning System Montana 680. The analysis of heavy metal concentrations was conducted onsite using portable handheld X-Ray Fluorescence (pXRF) Spectrometry. Hybrid machine learning—geostatistical interpolation (MLGI) method, specific to neural network particle swarm optimization with Empirical Bayesian Kriging (NN-PSO+EBK), was employed for data integration, GW quality spatial assessment and monitoring. Spatial map of metals concentration was produced using the NN-PSO-EBK. Another, spot map was created for observed metals concentration and was compared to the spatial maps. Results showed that the created maps recorded significant results based on its MSEs with values such as 1.404 × 10−4, 5.42 × 10−5, 6.26 × 10−4, 3.7 × 10−6, 4.141 × 10−4 for Ba, Cu, Fe, Mn, Zn, respectively. Also, cross-validation of the observed and predicted values resulted to R values range within 0.934–0.994 which means almost accurate. Based on these results, it can be stated that the technique is efficient for groundwater quality monitoring. Utilization of this technique could be useful in regular and efficient GW quality monitoring.


2021 ◽  
Vol 13 (21) ◽  
pp. 4391
Author(s):  
Mohamed Mourad ◽  
Takeshi Tsuji ◽  
Tatsunori Ikeda ◽  
Kazuya Ishitsuka ◽  
Shigeki Senna ◽  
...  

We present a novel approach to mapping the storage coefficient (Sk) from InSAR-derived surface deformation and S-wave velocity (Vs). We first constructed a 3D Vs model in the Kumamoto area, southwest Japan, by applying 3D empirical Bayesian kriging to the 1D Vs profiles estimated by the surface-wave analysis at 676 measured points. We also used the time series of InSAR deformation and groundwater-level data at 13 well sites covering April 2016 and December 2018 and estimated the Sk of the confined aquifer. The Sk estimated from InSAR, and well data ranged from ~0.03 to 2 × 10−3, with an average of 7.23 × 10−3, values typical for semi-confined and confined conditions. We found a clear relationship between the Sk and Vs at well locations, indicating that the compressibility of an aquifer is related to the stiffness or Vs. By applying the relationship to the 3D Vs model, we succeeded in mapping the Sk in an extensive area. Furthermore, the estimated Sk distribution correlates well with the hydrogeological setting: semi-confined conditions are predicted in the Kumamoto alluvial plain with a high Sk. Our approach is thus effective for estimating aquifer storage properties from Vs, even where limited groundwater-level data are available. Furthermore, we can estimate groundwater-level variation from the geodetic data.


Author(s):  
Huanhuan Zhu ◽  
Lin Pan ◽  
Yiji Li ◽  
Huiming Jin ◽  
Qian Wang ◽  
...  

The spatial accessibility of prehospital EMS is particularly important for the elderly population’s physiological functions. Due to the recent expansion of aging populations all over the globe, elderly people’s spatial accessibility to prehospital EMS presents a serious challenge. An efficient strategy to address this issue involves using geographic information systems (GIS)-based tools to evaluate the spatial accessibility in conjunction with the spatial distribution of aging people, available road networks, and prehospital EMS facilities. This study employed gravity model and empirical Bayesian Kriging (EBK) interpolation analysis to evaluate the elderly’s spatial access to prehospital EMS in Ningbo, China. In our study, we aimed to solve the following specific research questions: In the study area, “what are the characteristics of the prehospital EMS demand of the elderly?” “Do the elderly have equal and convenient spatial access to prehospital EMS?” and “How can we satisfy the prehospital EMS demand of an aging population, improve their spatial access to prehospital EMS, and then ensure their quality of life?” The results showed that 37.44% of patients admitted to prehospital EMS in 2020 were 65 years and older. The rate of utilization of ambulance services by the elderly was 27.39 per 1000 elderly residents. Ambulance use by the elderly was the highest in the winter months and the lowest in the spring months (25.90% vs. 22.38%). As for the disease spectrum, the main disease was found to be trauma and intoxication (23.70%). The mean accessibility score was only 1.43 and nearly 70% of demand points had scored lower than 1. The elderly’s spatial accessibility to prehospital EMS had a central-outward gradient decreasing trend from the central region to the southeast and southwest of the study area. Our proposed methodology and its spatial equilibrium results could be taken as a benchmark of prehospital care capacity and help inform authorities’ efforts to develop efficient, aging-focused spatial accessibility plans.


Author(s):  
Pengzhi Wei ◽  
Shaofeng Xie ◽  
Liangke Huang ◽  
Lilong Liu

With the increasing application of global navigation satellite system (GNSS) technology in the field of meteorology, satellite-derived zenith tropospheric delay (ZTD) and precipitable water vapor (PWV) data have been used to explore the spatial coverage pattern of PM2.5 concentrations. In this study, the PM2.5 concentration data obtained from 340 PM2.5 ground stations in south-central China were used to analyze the variation patterns of PM2.5 in south-central China at different time periods, and six PM2.5 interpolation models were developed in the region. The spatial and temporal PM2.5 variation patterns in central and southern China were analyzed from the perspectives of time series variations and spatial distribution characteristics, and six types of interpolation models were established in central and southern China. (1) Through correlation analysis, and exploratory regression and geographical detector methods, the correlation analysis of PM2.5-related variables showed that the GNSS-derived PWV and ZTD were negatively correlated with PM2.5, and that their significances and contributions to the spatial analysis were good. (2) Three types of suitable variable combinations were selected for modeling through a collinearity diagnosis, and six types of models (geographically weighted regression (GWR), geographically weighted regression kriging (GWRK), geographically weighted regression—empirical bayesian kriging (GWR-EBK), multiscale geographically weighted regression (MGWR), multiscale geographically weighted regression kriging (MGWRK), and multiscale geographically weighted regression—empirical bayesian kriging (MGWR-EBK)) were constructed. The overall R2 of the GWR-EBK model construction was the best (annual: 0.962, winter: 0.966, spring: 0.926, summer: 0.873, and autumn: 0.908), and the interpolation accuracy of the GWR-EBK model constructed by inputting ZTD was the best overall, with an average RMSE of 3.22 μg/m3 recorded, while the GWR-EBK model constructed by inputting PWV had the highest interpolation accuracy in winter, with an RMSE of 4.5 μg/m3 recorded; these values were 2.17% and 4.26% higher than the RMSE values of the other two types of models (ZTD and temperature) in winter, respectively. (3) The introduction of the empirical Bayesian kriging method to interpolate the residuals of the models (GWR and MGWR) and to then correct the original interpolation results of the models was the most effective, and the accuracy improvement percentage was better than that of the ordinary kriging method. The average improvement ratios of the GWRK and GWR-EBK models compared with that of the GWR model were 5.04% and 14.74%, respectively, and the average improvement ratios of the MGWRK and MGWR-EBK models compared with that of the MGWR model were 2.79% and 12.66%, respectively. (4) Elevation intervals and provinces were classified, and the influence of the elevation and the spatial distribution of the plane on the accuracy of the PM2.5 regional model was discussed. The experiments showed that the accuracy of the constructed regional model decreased as the elevation increased. The accuracies of the models in representing Henan, Hubei and Hunan provinces were lower than those of the models in representing Guangdong and Guangxi provinces.


2021 ◽  
Author(s):  
Prince Chapman Agyeman ◽  
Ndiye Michael Kebonye ◽  
Kingsley JOHN

Abstract Soil pollution is a big issue caused by anthropogenic activities. The spatial distribution of potentially toxic elements (PTEs) varies in most urban and peri-urban areas. As a result, spatially predicting the PTEs content in such soil is difficult. A total number of 115 samples were obtained from Frydek Mistek in the Czech Republic. Calcium(Ca), magnesium(Mg), potassium(K), and nickel (Ni) concentrations were determined using Inductively Coupled Plasma Optical Emission Spectroscopy. The correlation matrix between the response variable and the predictors revealed a satisfactory correlation between the elements. The prediction results indicated that support vector machine regression (SVMR) performed well although its estimated root mean square error (RMSE) (235.974) and mean absolute error (MAE) (166.946) were higher when compared with the other methods applied. Conversely, the hybridized model of empirical bayesian kriging -multiple linear regression (EBK-MLR) performed poorly as indicated by the measured coefficient of determination value below 0.1. The empirical bayesian kriging-support vector machine regression (EBK-SVMR) model was the best model, with low RMSE (95.479) and MAE (77.368) values and a high coefficient of determination (R2 = 0.637). EBK-SVMR modeling technique was visualized using self-organizing map. The clustered neurons of the hybridized model CakMg -EBK-SVMR component plane showed a diverse color pattern predicting the concentration of Ni in the urban and peri urban soil. The results proved that combining EBK and SVMR is an effective technique for predicting Ni concentrations in urban and peri-urban soil.


Geosciences ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 204
Author(s):  
Mohammad Salsabili ◽  
Ali Saeidi ◽  
Alain Rouleau ◽  
Miroslav Nastev

Knowledge of the stratigraphic architecture and geotechnical properties of surficial soil sediments is essential for geotechnical risk assessment. In the Saguenay study area, the Quaternary deposits consist of a basal till layer and heterogeneous post-glacial deposits. Considering the stratigraphic setting and soil type heterogeneity, a multistep stochastic methodology is developed for 3D geological modelling and quantification of the associated uncertainties. This methodology is adopted for regional studies and involves geostatistical interpolation and simulation methods. Empirical Bayesian kriging (EBK) is applied to generate the bedrock topography map and determine the thickness of the till sediments and their uncertainties. The locally varying mean and variance of the EBK method enable accounting for data complexity and moderate nonstationarity. Sequential indicator simulation is then performed to determine the occurrence probability of the discontinuous post-glacial sediments (clay, sand and gravel) on top of the basal till layer. The individual thickness maps of the discontinuous soil layers and uncertainties are generated in a probabilistic manner. The proposed stochastic framework is suitable for heterogeneous soil deposits characterised with complex surface and subsurface datasets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ghaffar Ali ◽  
Muhammad Sajjad ◽  
Shamsa Kanwal ◽  
Tingyin Xiao ◽  
Shoaib Khalid ◽  
...  

AbstractSpatial–temporal rainfall assessments are integral to climate/hydrological modeling, agricultural studies, and water resource planning and management. Herein, we evaluate spatial–temporal rainfall trends and patterns in Pakistan for 1961–2020 using nationwide data from 82 rainfall stations. To assess optimal spatial distribution and rainfall characterization, twenty-seven interpolation techniques from geo-statistical and deterministic categories were systematically compared, revealing that the empirical Bayesian kriging regression prediction (EBKRP) technique was best. Hence, EBKRP was used to produce and utilize the first normal annual rainfall map of Pakistan for evaluating spatial rainfall patterns. While the largest under-prediction was estimated for Hunza (− 51%), the highest and lowest rainfalls were estimated for Malam Jaba in Khyber Pakhtunkhwa province (~  1700 mm), and Nok-kundi in Balochistan province (~  50 mm), respectively. A gradual south-to-north increase in rainfall was spatially evident with an areal average of 455 mm, while long-term temporal rainfall evaluation showed a statistically significant (p = 0.05) downward trend for Sindh province. Additionally, downward inter-decadal regime shifts were detected for the Punjab and Sindh provinces (90% confidence). These results are expected to help inform environmental planning in Pakistan; moreover, the rainfall data produced using the optimal method has further implications in several aforementioned fields.


Author(s):  
Carlos Manuel Ramirez López ◽  
Martín Montes Rivera ◽  
Alberto Ochoa ◽  
Julio César Ponce Gallegos ◽  
José Eder Guzmán Mendoza

This research presents the application of Empirical Bayesian Kriging, a geostatistical interpolation method. The case study is about suicide prevention. The dataset is composed of more than one million records, obtained from the report database of the Emergency Service 911 of the Mexican State of Aguascalientes. The purpose is to get prediction surfaces, probability, and standard error prediction for completed suicide cases. Here, the variations in the environment of suicide cases are relative to and dependent on economic, social, and cultural phenomena.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ashley Leach ◽  
Heather Leach

AbstractSpotted lanternfly (SLF) is an invasive insect in the Northeastern U.S. projected to spread nationally and globally. While SLF is a significant pest of vineyards, little is known about the pest in grape agroecosystems including its spatial ecology. SLF spatial patterns were analyzed using a combination of approaches including generalized linear mixed effect models, Moran’s I statistic for spatial clustering, and Empirical Bayesian Kriging. Analysis revealed that SLF displayed significantly clumped distributions in monitored vineyards. Approximately 54% and 44% of the respective adult and egg mass populations were observed within the first 15 m of the vineyard edge. Importantly, the spatial concentration of adults at the edge was consistent temporally, both between years and weeks. Moreover, high populations of SLF on vines were significantly correlated with reduced fruit production in the following year. Mark-release-recapture of SLF revealed that higher proportions of SLF were recaptured on vines with high pre-existing SLF populations, indicating that SLF may exhibit aggregation behavior along vineyard perimeters. Monitoring and management efforts for SLF should be prioritized around vineyard edges as it may significantly reduce infestations and subsequent damage.


2020 ◽  
Vol 12 (1) ◽  
pp. 1185-1199
Author(s):  
Mirosław Kamiński

AbstractThe research area is located on the boundary between two Paleozoic structural units: the Radom–Kraśnik Block and the Mazovian–Lublin Basin in the southeastern Poland. The tectonic structures are separated by the Ursynów–Kazimierz Dolny fault zone. The digital terrain model obtained by the ALS (Airborne Laser Scanning) method was used. Classification and filtration of an elevation point cloud were performed. Then, from the elevation points representing only surfaces, a digital terrain model was generated. The model was used to visually interpret the course of topolineaments and their automatic extraction from DTM. Two topolineament systems, trending NE–SW and NW–SE, were interpreted. Using the kernel density algorithm, topolineament density models were generated. Using the Empirical Bayesian Kriging, a thickness model of quaternary deposits was generated. A relationship was observed between the course of topolineaments and the distribution and thickness of Quaternary formations. The topolineaments were compared with fault directions marked on tectonic maps of the Paleozoic and Mesozoic. Data validation showed consistency between topolineaments and tectonic faults. The obtained results are encouraging for further research.


Sign in / Sign up

Export Citation Format

Share Document